The Yang-Baxter Equation and Hopf-Galois Theory via Skew Braces

Kayvan Nejabati Zenouz¹

Oxford Brookes University

Braces and Hopf-Galois Theory Keele University

June 18, 2019

¹Email: knejabati-zenouz@brookes.ac.uk website: www.nejabatiz.com

Contents

Introduction

- 2 The Yang-Baxter Equation
- 3 Skew Braces
 - Skew Braces and the YBE
 - Relation to Rings
- 4 Hopf-Galois Structures
 - Automorphism Groups of Skew Braces
- Classification of Hopf-Galois Structures and Skew BracesStrategy for the Proofs
- 6 Skew Braces of Semi-direct Product Type
- **7** Scopes and Work in Progress

Introduction to

Introduction to

The Yang-Baxter Equation

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

via

Skew Braces

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

via

Skew Braces

Classification of

Hopf-Galois Structures and Skew Braces of order p^3

The Yang-Baxter Equation

The Yang-Baxter Equation

For a vector space V, an element

 $R \in \mathrm{GL}(V \otimes V)$

is said to satisfy the Yang-Baxter equation (YBE) if

 $(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R)$

holds.

The Yang-Baxter Equation

For a vector space V, an element

 $R \in \mathrm{GL}(V \otimes V)$

is said to satisfy the Yang-Baxter equation (YBE) if

 $(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R)$

holds.

This equation can be depicted by

Nowadays the Yang-Baxter equation has a central role in **quantum group theory** with applications in

Nowadays the Yang-Baxter equation has a central role in **quantum group theory** with applications in

integrable systems

Nowadays the Yang-Baxter equation has a central role in **quantum group theory** with applications in

integrable systems

knot theory

Nowadays the Yang-Baxter equation has a central role in **quantum group theory** with applications in

integrable systems

knot theory

tensor categories

In 1992 Drinfeld suggested studying the **simplest class of solutions** arising from the **set-theoretic** version of this equation.

In 1992 Drinfeld suggested studying the **simplest class of solutions** arising from the **set-theoretic** version of this equation.

Definition

Let X be a nonempty set and

$$\begin{aligned} r: X \times X &\longrightarrow X \times X \\ (x, y) &\longmapsto (f_x(y), g_y(x)) \end{aligned}$$

a bijection.

In 1992 Drinfeld suggested studying the **simplest class of solutions** arising from the **set-theoretic** version of this equation.

Definition

Let X be a nonempty set and

$$r: X \times X \longrightarrow X \times X$$
$$(x, y) \longmapsto (f_x(y), g_y(x))$$

a bijection. Then (X, r) is a **set-theoretic solution** of YBE if

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$$

holds.

In 1992 Drinfeld suggested studying the **simplest class of solutions** arising from the **set-theoretic** version of this equation.

Definition

Let X be a nonempty set and

$$r: X \times X \longrightarrow X \times X$$
$$(x, y) \longmapsto (f_x(y), g_y(x))$$

a bijection. Then (X, r) is a **set-theoretic solution** of YBE if

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

holds. The solution (X, r) is called **non-degenerate** if $f_x, g_x \in \text{Perm}(X)$ for all $x \in X$ and **involutive** if $r^2 = \text{id}$.

Examples

6

Let X be a nonempty set.

The map
$$r(x, y) = (y, x)$$
.

Examples

Let X be a nonempty set.

) The map
$$r(x, y) = (y, x)$$
.

2 Let $f, g: X \longrightarrow X$ be bijections with fg = gf. Then

$$r(x,y) = (f(y),g(x))$$

gives a non-degenerate solution, which is involutive if and only if $f = g^{-1}$.

Examples

Let X be a nonempty set.

) The map
$$r(x, y) = (y, x)$$
.

2 Let $f, q: X \longrightarrow X$ be bijections with fq = qf. Then

$$r(x,y) = (f(y),g(x))$$

gives a non-degenerate solution, which is involutive if and only if $f = q^{-1}$.

• For any group structure on X the map

$$r(x,y) = (y,yxy^{-1}).$$

• If $(R, +, \cdot)$ is a radical ring with circle operation $a \circ b = a + ab + b$ then $r(x, y) = (xy + y, (xy + y)^{\circ -1} \circ x \circ y).$

A (left) **skew brace** is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups

A (left) **skew brace** is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$a\odot(b\oplus c)=(a\odot b)\ominus a\oplus(a\odot c),$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus .

A (left) **skew brace** is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$a \odot (b \oplus c) = (a \odot b) \ominus a \oplus (a \odot c),$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus .

Remark

A skew brace is called **two-sided** if

$$(b\oplus c)\odot a = (b\odot a)\ominus a\oplus (c\odot a).$$

A (left) **skew brace** is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$a \odot (b \oplus c) = (a \odot b) \ominus a \oplus (a \odot c),$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus .

Remark

A skew brace is called **two-sided** if

$$(b \oplus c) \odot a = (b \odot a) \ominus a \oplus (c \odot a).$$

Interesting for ring theorists: 0 = 1.

Example

Any group (B, \oplus) with

 $a \odot b = a \oplus b$ (similarly with $a \odot b = b \oplus a$)

is a skew brace. This is the **trivial** skew brace structure.

Example

Any group (B, \oplus) with

```
a \odot b = a \oplus b (similarly with a \odot b = b \oplus a)
```

is a skew brace. This is the **trivial** skew brace structure.

Notation

• We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a *G*-skew brace of **type** *N*.

Example

Any group (B, \oplus) with

```
a \odot b = a \oplus b (similarly with a \odot b = b \oplus a)
```

is a skew brace. This is the **trivial** skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a *G*-skew brace of **type** *N*.
- A skew brace (B, \oplus, \odot) is called a **brace** if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Example

Any group (B, \oplus) with

```
a \odot b = a \oplus b (similarly with a \odot b = b \oplus a)
```

is a skew brace. This is the **trivial** skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a *G*-skew brace of **type** *N*.
- A skew brace (B, \oplus, \odot) is called a **brace** if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings.

Example

Any group (B, \oplus) with

```
a \odot b = a \oplus b (similarly with a \odot b = b \oplus a)
```

is a skew brace. This is the **trivial** skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a *G*-skew brace of **type** *N*.
- A skew brace (B, \oplus, \odot) is called a **brace** if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings. They provide *non-degenerate*, *involutive* set-theoretic solutions of the YBE.

Skew Braces: History

Skew braces generalise braces and were introduced by Guarnieri and Vendramin in 2017.

Skew braces generalise braces and were introduced by Guarnieri and Vendramin in 2017.

They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Skew braces generalise braces and were introduced by Guarnieri and Vendramin in 2017.

They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Their connection to **ring theory** and **Hopf-Galois structures** was studied by Bachiller, Byott, Smoktunowicz, and Vendramin.

10/47

Theorem (L. Guarnieri and L. Vendramin)

Let (B, \oplus, \odot) be a skew brace. Then the map

$$r_B: B \times B \longrightarrow B \times B$$
$$(a, b) \longmapsto (\ominus a \oplus (a \odot b), (\ominus a \oplus (a \odot b))^{-1} \odot a \odot b)$$

is a non-degenerate set-theoretic solution of the YBE, which is involutive if and only if (B, \oplus, \odot) is a brace.

Relation to Rings

• Given a skew brace (B, \oplus, \odot) define

$$a \otimes b = \ominus a \oplus (a \odot b) \ominus b.$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.
• Given a skew brace (B, \oplus, \odot) define

$$a \otimes b = \ominus a \oplus (a \odot b) \ominus b.$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.

• However, if B is a two-sided brace, then (B, \oplus, \otimes) is a radical ring, Rump (2007).

• Given a skew brace (B, \oplus, \odot) define

$$a \otimes b = \ominus a \oplus (a \odot b) \ominus b.$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.

- However, if B is a two-sided brace, then (B, \oplus, \otimes) is a radical ring, Rump (2007).
- Conversely, if (B, \oplus, \otimes) is a **radical ring**, then (B, \oplus, \circ) , where

$$a \circ b = a \oplus a \otimes b \oplus b$$

is a **two-sided brace**, Rump (2007).

Two aims in developing the theory:

Two aims in developing the theory:

Galois theory for inseparable extensions of fields.

Two aims in developing the theory:

Galois theory for inseparable extensions of fields.

Studying rings of integers of extensions of number fields.

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

• Assume L/K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_p).

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

- Assume L/K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_p).
- Denote by \mathcal{O}_L and \mathcal{O}_K the rings of integers of L and K, respectively.

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

- Assume L/K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_p).
- Denote by \mathcal{O}_L and \mathcal{O}_K the rings of integers of L and K, respectively.
- Then \mathcal{O}_L is also a module over $\mathcal{O}_K[G]$.

For simplicity we assume L/K is a **Galois extension** of fields with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

- Assume L/K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_p).
- Denote by \mathcal{O}_L and \mathcal{O}_K the rings of integers of L and K, respectively.
- Then \mathcal{O}_L is also a module over $\mathcal{O}_K[G]$.
- Can \mathcal{O}_L be free over $\mathcal{O}_K[G]$?

... No in general.

Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Definition

A **Hopf-Galois structure** on L/K consists of a finite dimensional cocommutative *K*-*Hopf algebra H* together with an action on *L* such that the *R*-module homomorphism

$$j: L \otimes_K H \longrightarrow \operatorname{End}_K (L)$$
$$s \otimes h \longmapsto (t \longmapsto sh(t)) \text{ for } s, t \in L, h \in H$$

is an isomorphism.

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Definition

A **Hopf-Galois structure** on L/K consists of a finite dimensional cocommutative *K*-*Hopf algebra H* together with an action on *L* such that the *R*-module homomorphism

$$j: L \otimes_K H \longrightarrow \operatorname{End}_K (L)$$
$$s \otimes h \longmapsto (t \longmapsto sh(t)) \text{ for } s, t \in L, h \in H$$

is an isomorphism.

The group algebra K[G] endows L/K with the classical Hopf-Galois structure.

• Assume L/K is a Galois extension of (local/global) fields with Galois group G.

- Assume L/K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L/K with a Hopf-Galois structure.

- Assume L/K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L/K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_L in H by

$$\mathfrak{A}_{H} = \{ \alpha \in H \mid \alpha \left(\mathcal{O}_{L} \right) \subseteq \mathcal{O}_{L} \}.$$

- Assume L/K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L/K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_L in H by

$$\mathfrak{A}_{H} = \{ \alpha \in H \mid \alpha \left(\mathcal{O}_{L} \right) \subseteq \mathcal{O}_{L} \}.$$

• Can \mathcal{O}_L be free over \mathfrak{A}_H ?

- Assume L/K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L/K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_L in H by

$$\mathfrak{A}_{H} = \{ \alpha \in H \mid \alpha \left(\mathcal{O}_{L} \right) \subseteq \mathcal{O}_{L} \}.$$

- Can \mathcal{O}_L be free over \mathfrak{A}_H ?
- How to find Hopf-Galois structures?

Hopf-Galois Structures: A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular subgroups of Perm(G) which are normalised by the image of G, as left translations, inside Perm(G).

Hopf-Galois Structures: A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular subgroups of Perm(G) which are normalised by the image of G, as left translations, inside Perm(G).

Every K-Hopf algebra which endows L/K with a Hopf-Galois structure is of the form $L[N]^G$ for some regular subgroup $N \subseteq \text{Perm}(G)$ normalised by the left translations.

Problem

The group Perm(G) can be large.

Problem

The group Perm(G) can be large.

Instead of working with groups of permutations, work with holomorphs.

Problem

The group $\operatorname{Perm}(G)$ can be large.

Instead of working with groups of permutations, work with $holomorphs. \label{eq:constraint}$

Theorem (Byott 1996)

Let G and N be finite groups. There exists a bijection between the sets

 $\mathcal{N} = \{ \alpha : N \hookrightarrow \operatorname{Perm}(G) \mid \alpha(N) \text{ is regular and normalised by } G \}$ $\mathcal{G} = \{ \beta : G \hookrightarrow \operatorname{Hol}(N) \mid \beta(G) \text{ is regular} \},$ where $\operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N).$

Enumerating Hopf-Galois Structures (Byott)

Using Byott's translation one can show that

 $\begin{aligned} & \# \text{HGS on } L/K \text{ of type } N = \\ & \frac{|\text{Aut}(G)|}{|\text{Aut}(N)|} \left| \{ H \subseteq \text{Hol}(N) \text{ regular with } H \cong G \} \right|. \end{aligned}$

• Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.
- Byott (1996, 2004) studied the problem for $|G| = p^2, pq$, also when G is a **nonabelian simple group**.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.
- Byott (1996, 2004) studied the problem for $|G| = p^2, pq$, also when G is a **nonabelian simple group**.
- Carnahan and Childs (1999, 2005) studied Hopf-Galois structures for $G = C_p^n$ and $G = S_n$.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.
- Byott (1996, 2004) studied the problem for $|G| = p^2, pq$, also when G is a **nonabelian simple group**.
- Carnahan and Childs (1999, 2005) studied Hopf-Galois structures for $G = C_p^n$ and $G = S_n$.
- Alabadi and Byott (2017) studied the problem for |G| is squarefree.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.
- Byott (1996, 2004) studied the problem for $|G| = p^2, pq$, also when G is a **nonabelian simple group**.
- Carnahan and Childs (1999, 2005) studied Hopf-Galois structures for $G = C_p^n$ and $G = S_n$.
- Alabadi and Byott (2017) studied the problem for |G| is squarefree.
- Nejabati Zenouz (2018) Hopf-Galois structures for $|G| = p^3$ where p is a prime number.

- Byott (1996) showed if |G| = n, then L/K a **unique** Hopf-Galois structure iff gcd $(n, \phi(n)) = 1$.
- Kohl (1998, 2019) classified Hopf-Galois structures for $G = C_{p^n}, D_n$ for a prime p > 2.
- Byott (1996, 2004) studied the problem for $|G| = p^2, pq$, also when G is a **nonabelian simple group**.
- Carnahan and Childs (1999, 2005) studied Hopf-Galois structures for $G = C_p^n$ and $G = S_n$.
- Alabadi and Byott (2017) studied the problem for |G| is squarefree.
- Nejabati Zenouz (2018) Hopf-Galois structures for $|G| = p^3$ where p is a prime number.
- Crespo and Salguero extensions of degree $C_{p^n} \rtimes C_D$, Samways cyclic extensions, and Tsang S_n -extensions.

Hopf-Galois Structures of Order p^3 for p > 3

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L/K of type N, e(G, N), is given by

Hopf-Galois Structures of Order p^3 for p > 3

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L/K of type N, e(G, N), is given by

e(G, N)	C_{p3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$C_{p^2} \rtimes C_p$
C_{p^3}	p^2	-	-	-	-
$C_{p^2} \times C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$
C_p^3	-	-	$(p^4 + p^3 - 1)p^2$	$(p^3 - 1)(p^2 + p - 1)p^2$	-
$C_p^2 \rtimes C_p$	-	-	$(p^2 + p - 1)p^2$	$(2p^3 - 3p + 1)p^2$	-
$C_{p^2} \rtimes C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$

Column $C_p^2 \rtimes C_p$ J. Algebra [cf. NZ19, Apr 2019]. Cases p=2,3 are also treated in PhD thesis.

Hopf-Galois Structures of Order p^3 for p > 3

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L/K of type N, e(G, N), is given by

e(G, N)	C_{p3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$C_{p^2} \rtimes C_p$
C_{p^3}	p^2	-	-	-	-
$C_{p^2} \times C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$
C_p^3	-	-	$(p^4 + p^3 - 1)p^2$	$(p^3 - 1)(p^2 + p - 1)p^2$	-
$C_p^2 \rtimes C_p$	-	-	$(p^2 + p - 1)p^2$	$(2p^3 - 3p + 1)p^2$	-
$C_{p^2} \rtimes C_p$	-	$(2p-1)p^2$	-	-	$(2p-1)(p-1)p^2$

Column $C_p^2 \rtimes C_p$ J. Algebra [cf. NZ19, Apr 2019]. Cases p=2,3 are also treated in PhD thesis.

Remark

Note $p^2 \mid e(G, N)$ and

 $\left|\operatorname{Aut}(N)\right|e(G,N)=\left|\operatorname{Aut}(G)\right|e(N,G).$

Corollaries

Denote by

$$e(G) = \sum_{N} e(G, N)$$
 and $\overline{e}(N) = \sum_{G} e(G, N)$.
Corollaries

Denote by

$$e(G) = \sum_{N} e(G, N)$$
 and $\overline{e}(N) = \sum_{G} e(G, N)$.

Then we have

Corollaries

Denote by

$$e(G) = \sum_{N} e(G, N)$$
 and $\overline{e}(N) = \sum_{G} e(G, N)$.

Then we have

22/47

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures.

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures.

$$\left\{ \begin{array}{l} \text{isomorphism classes} \\ \text{of } G\text{-skew braces,} \\ \text{i.e., with } (B, \odot) \cong G \end{array} \right\} \xleftarrow{\text{bij}} \left\{ \end{array}$$

classes of certain regular subgroups of Perm(G) under conjugation by elements of Aut(G)

24/47

• Suppose (B, \oplus, \odot) is a skew brace.

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b)$$

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b)$$

which is a regular embedding.

• The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b)$$

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L/K with Galois group (B, \odot) .

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b)$$

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L/K with Galois group (B, \odot) .
- Thus $L[\operatorname{Im} d]^{(B,\odot)}$ endows L/K with a Hopf-Galois structure of type (B, \oplus) .

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$d: (B, \oplus) \longrightarrow \operatorname{Perm} (B, \odot)$$
$$a \longmapsto (d_a: b \longmapsto a \oplus b)$$

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L/K with Galois group (B, \odot) .
- Thus $L[\operatorname{Im} d]^{(B,\odot)}$ endows L/K with a Hopf-Galois structure of type (B,\oplus) .
- Isomorphic skew braces correspond to conjugate regular subgroups.

• Suppose H endows L/K with a Hopf-Galois structure.

- Suppose H endows L/K with a Hopf-Galois structure.
- Then $H = L[N]^{(B,\odot)}$ for some $N \subseteq \text{Perm}(B, \odot)$ which is a regular subgroup normalised the left translations.

- Suppose H endows L/K with a Hopf-Galois structure.
- Then $H = L[N]^{(B,\odot)}$ for some $N \subseteq \text{Perm}(B,\odot)$ which is a regular subgroup normalised the left translations.
- $\bullet~N$ is a regular subgroup, implies that we have a bijection

$$\phi: N \longrightarrow (B, \odot)$$
$$n \longmapsto n \cdot 1.$$

- Suppose H endows L/K with a Hopf-Galois structure.
- Then $H = L[N]^{(B,\odot)}$ for some $N \subseteq \text{Perm}(B,\odot)$ which is a regular subgroup normalised the left translations.
- $\bullet~N$ is a regular subgroup, implies that we have a bijection

$$\phi: N \longrightarrow (B, \odot)$$
$$n \longmapsto n \cdot 1.$$

• Define

$$a \oplus b = \phi \left(\phi^{-1} \left(a \right) \phi^{-1} \left(b \right) \right) \text{ for } a, b \in \left(B, \odot \right).$$

- Suppose H endows L/K with a Hopf-Galois structure.
- Then $H = L[N]^{(B,\odot)}$ for some $N \subseteq \text{Perm}(B,\odot)$ which is a regular subgroup normalised the left translations.
- $\bullet~N$ is a regular subgroup, implies that we have a bijection

$$\phi: N \longrightarrow (B, \odot)$$
$$n \longmapsto n \cdot 1.$$

• Define

$$a \oplus b = \phi \left(\phi^{-1} \left(a \right) \phi^{-1} \left(b \right) \right) \text{ for } a, b \in \left(B, \odot \right).$$

• N is normalised by the left translations implies that (B, \oplus, \odot) is a skew brace of type N corresponding to $H_{25/4}$

Skew Braces and Hopf-Galois Structures Correspondence

 $\left\{ \begin{array}{l} \text{isomorphism classes} \\ \text{of } G\text{-skew braces,} \\ \text{i.e., with } (B, \odot) \cong G \end{array} \right\} \xleftarrow{\text{bij}} \left\{ \begin{array}{l} \text{classes of Hopf-Galois structures} \\ \text{on } L/K \text{ under } L[N_1]^G \sim L[N_2]^G \\ \text{if } N_2 = \alpha N_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(G) \end{array} \right\}$

Skew Braces and Hopf-Galois Structures Correspondence

$$\begin{cases} \text{isomorphism classes} \\ \text{of } G\text{-skew braces,} \\ \text{i.e., with } (B, \odot) \cong G \end{cases} \xrightarrow{\text{bij}} \begin{cases} \text{classes of Hopf-Galois structures} \\ \text{on } L/K \text{ under } L[N_1]^G \sim L[N_2]^G \\ \text{if } N_2 = \alpha N_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(G) \end{cases}$$

i.e., if (B, \oplus, \odot) is a skew brace of type, then we get the

following Hopf-Galois structures on L/K

 $\left\{ L[\alpha \left(\operatorname{Im} d \right) \alpha^{-1}]^{(B,\odot)} \mid \alpha \in \operatorname{Aut} \left(B, \odot \right) \right\}.$

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]

In particular, if $f: (B, \oplus, \odot) \longrightarrow (B, \oplus, \odot)$ is an automorphism,

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]

In particular, if $f: (B, \oplus, \odot) \longrightarrow (B, \oplus, \odot)$ is an automorphism, then we have

$$(B, \oplus) \stackrel{\longleftarrow}{\longrightarrow} \operatorname{Perm} (B, \odot)$$

$$\downarrow^{l} f \qquad \downarrow^{l} C_{f}$$

$$(B, \oplus) \stackrel{d}{\longleftarrow} \operatorname{Perm} (B, \odot);$$

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]

In particular, if $f: (B, \oplus, \odot) \longrightarrow (B, \oplus, \odot)$ is an automorphism, then we have

$$(B, \oplus) \stackrel{\longleftarrow}{\longrightarrow} \operatorname{Perm}(B, \odot)$$

$$\downarrow^{f} \qquad \downarrow^{C_{f}}$$

$$(B, \oplus) \stackrel{d}{\longrightarrow} \operatorname{Perm}(B, \odot);$$

using this observation we find

 $\operatorname{Aut}_{\mathcal{B}^{r}}(B,\oplus,\odot) \cong \left\{ \alpha \in \operatorname{Aut}(B,\odot) \mid \alpha \left(\operatorname{Im} d\right) \alpha^{-1} \subseteq \operatorname{Im} d \right\}.$

Classification of Hopf-Galois Structures and Skew Braces: Theoretical

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify elements of the set

 $\mathcal{S}(G, N) = \{ H \subseteq \operatorname{Perm}(G) \mid H \text{ is regular, NLT}, H \cong N \},\$

and extract a maximal subset whose elements are not conjugate by any element of Aut (G).

Classification of Hopf-Galois Structures and Skew Braces: Theoretical

Hopf-Galois Structures Parametrised by Skew Braces [cf. NZ19, Corollary 2.4]

Denote by B_G^N the isomorphism class of a *G*-skew brace of type N given by (B, \oplus, \odot) .

Classification of Hopf-Galois Structures and Skew Braces: Theoretical

Hopf-Galois Structures Parametrised by Skew Braces [cf. NZ19, Corollary 2.4]

Denote by B_G^N the isomorphism class of a *G*-skew brace of type N given by (B, \oplus, \odot) . Then the number of Hopf-Galois structures on L/K of type N is given by

$$e(G, N) = \sum_{B_G^N} \frac{|\operatorname{Aut} (G)|}{|\operatorname{Aut}_{\mathcal{B}r} (B_G^N)|}.$$

29/47

Classification of Hopf-Galois Structures and Skew Braces: Practical

Again we would like to work with **holomorphs** instead of the **permutation groups**.

Classification of Hopf-Galois Structures and Skew Braces: Practical

Again we would like to work with **holomorphs** instead of the **permutation groups**.

For a skew brace (B, \oplus, \odot) consider the action of (B, \odot) on (B, \oplus) by $(a, b) \longmapsto a \odot b$. This yields to a map

$$m: (B, \odot) \longrightarrow \operatorname{Hol}(B, \oplus)$$
$$a \longmapsto (m_a: b \longmapsto a \odot b)$$

which is a regular embedding.

30/47

Skew Braces and Regular Subgroups of Holomorph Correspondence

Bachiller, Byott, Vendramin:

 $\left\{\begin{array}{l} \text{isomorphism classes} \\ \text{of skew braces of} \\ \text{type } N, \, \text{i.e., with} \\ (B, \oplus) \cong N \end{array}\right\} \stackrel{\text{bij}}{\longleftrightarrow} \left\{\begin{array}{l} \text{classes of regular subgroup of} \\ \text{Hol}(N) \text{ under } H_1 \sim H_2 \text{ if} \\ H_2 = \alpha H_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(N) \end{array}\right.$ classes of regular subgroup of

Skew Braces and Regular Subgroups of Holomorph Correspondence

Bachiller, Byott, Vendramin:

 $\left\{ \begin{array}{l} \text{isomorphism classes} \\ \text{of skew braces of} \\ \text{type } N, \text{ i.e., with} \\ (B, \oplus) \cong N \end{array} \right\} \xleftarrow{\text{bij}} \left\{ \begin{array}{l} \text{classes of regular subgroup of} \\ \text{Hol}(N) \text{ under } H_1 \sim H_2 \text{ if} \\ H_2 = \alpha H_1 \alpha^{-1} \text{ for some} \\ \alpha \in \text{Aut}(N) \end{array} \right.$ classes of regular subgroup of $\alpha \in \operatorname{Aut}(N)$

Another Characterisation of Automorphism Group [cf. NZ18, Jan 2018, Theorem 2.3.8, p 29] We find

 $\operatorname{Aut}_{\mathcal{B}r}(B,\oplus,\odot) \cong \left\{ \alpha \in \operatorname{Aut}(B,\oplus) \mid \alpha \,(\operatorname{Im} m) \,\alpha^{-1} \subseteq \operatorname{Im} m \right\}.$

Classifying Skew Braces and Hopf-Galois Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N,

Classifying Skew Braces and Hopf-Galois Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N, classify elements of the set

$$\mathcal{S}'(G, N) = \{ H \subseteq \operatorname{Hol}(N) \mid H \text{ is regular}, \ H \cong G \},\$$

and extract a maximal subset whose elements are not conjugate by any element of Aut (N).

• Rump (2007) classified **cyclic braces**.

Rump (2007) classified cyclic braces.
Bachiller (2015) classified braces of order p³.

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^3 .
- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^3 .
- Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator.

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^3 .
- Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order p^2q .

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^3 .
- Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order p^2q .
- Childs (2018, 2019) correspondence and bi-skew braces.

- ♦ Rump (2007) classified **cyclic braces**.
- Bachiller (2015) classified braces of order p^3 .
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin (2017, 2018) conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^3 .
- Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order p^2q .
- Childs (2018, 2019) correspondence and bi-skew braces.

Timur Nasybullov (2018), two-sided skew braces.
 Koch and Truman (2019), opposite braces and isomorphism correspondence.

Skew Braces of Order p^3 for p > 3

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \tilde{e}(G, N)$, is given by

Skew Braces of Order p^3 for p > 3

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \tilde{e}(G, N)$, is given by

$\widetilde{e}(G,N)$	C_{p^3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$C_{p^2} \rtimes C_p$
$C_{p^{3}}$	3	-	-	-	-
$C_{p^2} \times C_p$	-	9	-	-	4p + 1
C_p^3	-	-	5	2p + 1	-
$C_p^2 \rtimes C_p$	-	-	2p + 1	$2p^2 - p + 3$	-
$\overline{C_{p^2}}\rtimes C_p$	-	4p + 1	-	-	$4p^2 - 3p - 1$

Column $C_p^2 \rtimes C_p$ and automorphism groups [cf. NZ19, Apr 2019].

Skew Braces of Order p^3 for p > 3

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \tilde{e}(G, N)$, is given by

$\widetilde{e}(G,N)$	C_{p^3}	$C_{p^2} \times C_p$	C_p^3	$C_p^2 \rtimes C_p$	$C_{p^2} \rtimes C_p$
$C_{p^{3}}$	3	-	-	-	-
$C_{p^2} \times C_p$	-	9	-	-	4p + 1
C_p^3	-	-	5	2p + 1	-
$C_p^2 \rtimes C_p$	-	-	2p + 1	$2p^2 - p + 3$	-
$\overline{C_{p^2}}\rtimes C_p$	-	4p + 1	-	-	$4p^2 - 3p - 1$

Column $C_p^2 \rtimes C_p$ and automorphism groups [cf. NZ19, Apr 2019].

Remark

Note

$$\widetilde{e}(G,N)=\widetilde{e}(N,G).$$

Corollary

Denote by

$$\widetilde{e}(G) = \sum_{N} \widetilde{e}(G, N) = \sum_{N} \widetilde{e}(N, G).$$

Corollary

Denote by

$$\widetilde{e}(G) = \sum_{N} \widetilde{e}(G, N) = \sum_{N} \widetilde{e}(N, G).$$

Then we have

Corollary

Denote by

$$\widetilde{e}(G) = \sum_{N} \widetilde{e}(G, N) = \sum_{N} \widetilde{e}(N, G).$$

Then we have

G	$\widetilde{e}(G)$
C_{p^3}	3
$\dot{C_{p^2}} \times C_p$	4p + 10
$\dot{C_p^3}$	2p + 6
$\dot{C_p^2} \rtimes C_p$	$2p^2 + p + 4$
$\dot{C_{p^2}} \rtimes C_p$	$4p^2 + p$
Total	$6p^2 + 8p + 23$

• For each group N of order p^3 determine $\operatorname{Aut}(N)$.

• For each group N of order p^3 determine $\operatorname{Aut}(N)$. $\operatorname{Aut}(C_{p^3}) \cong C_{p^2} \times C_{p-1}, \ \operatorname{Aut}(C_p^3) \cong \operatorname{GL}_3(\mathbb{F}_p),$ $\operatorname{Aut}(C_p^2 \rtimes C_p) \cong C_p^2 \rtimes \operatorname{GL}_2(\mathbb{F}_p),$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \times C_p) \longrightarrow \operatorname{UP}_2(\mathbb{F}_p) \longrightarrow 1,$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \rtimes C_p) \longrightarrow \operatorname{UP}_2^1(\mathbb{F}_p) \longrightarrow 1.$

- For each group N of order p^3 determine $\operatorname{Aut}(N)$. $\operatorname{Aut}(C_{p^3}) \cong C_{p^2} \times C_{p-1}, \ \operatorname{Aut}(C_p^3) \cong \operatorname{GL}_3(\mathbb{F}_p),$ $\operatorname{Aut}(C_p^2 \rtimes C_p) \cong C_p^2 \rtimes \operatorname{GL}_2(\mathbb{F}_p),$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \times C_p) \longrightarrow \operatorname{UP}_2(\mathbb{F}_p) \longrightarrow 1,$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \rtimes C_p) \longrightarrow \operatorname{UP}_2^1(\mathbb{F}_p) \longrightarrow 1.$
- Classify regular subgroups of Hol(N) according to the size of their image under the natural projection

$$\operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N).$$

- For each group N of order p^3 determine $\operatorname{Aut}(N)$. $\operatorname{Aut}(C_{p^3}) \cong C_{p^2} \times C_{p-1}, \ \operatorname{Aut}(C_p^3) \cong \operatorname{GL}_3(\mathbb{F}_p),$ $\operatorname{Aut}(C_p^2 \rtimes C_p) \cong C_p^2 \rtimes \operatorname{GL}_2(\mathbb{F}_p),$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \times C_p) \longrightarrow \operatorname{UP}_2(\mathbb{F}_p) \longrightarrow 1,$ $1 \longrightarrow C_p^2 \longrightarrow \operatorname{Aut}(C_{p^2} \rtimes C_p) \longrightarrow \operatorname{UP}_2^1(\mathbb{F}_p) \longrightarrow 1.$
- Classify regular subgroups of Hol(N) according to the size of their image under the natural projection

$$\operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N).$$

36/47

• To find **skew braces** study conjugation formula by elements of Aut(N) inside Hol(N).

• Organise the regular subgroups of $H \subset Hol(N)$ according to the size of their image under the projection

 $\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \qquad \eta \alpha \longmapsto \alpha.$

• Organise the regular subgroups of $H \subset Hol(N)$ according to the size of their image under the projection

 $\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \qquad \eta \alpha \longmapsto \alpha.$

• Suppose $|\Theta(H)| = m$, where m divides |N|, we take a subgroup of order m of Aut(N) say

$$H_2 = \langle \alpha_1, ..., \alpha_s \rangle \subseteq \operatorname{Aut}(N).$$

• Organise the regular subgroups of $H \subset Hol(N)$ according to the size of their image under the projection

 $\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \qquad \eta \alpha \longmapsto \alpha.$

• Suppose $|\Theta(H)| = m$, where m divides |N|, we take a subgroup of order m of Aut(N) say

$$H_2 = \langle \alpha_1, ..., \alpha_s \rangle \subseteq \operatorname{Aut}(N).$$

• A subgroup of order $\frac{|N|}{m}$ of N say $H_1 = \langle \eta_1, ..., \eta_r \rangle \subseteq N$, general elements $v_1, ..., v_s \in N$.

• Organise the regular subgroups of $H \subset Hol(N)$ according to the size of their image under the projection

 $\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \qquad \eta \alpha \longmapsto \alpha.$

• Suppose $|\Theta(H)| = m$, where m divides |N|, we take a subgroup of order m of Aut(N) say

$$H_2 = \langle \alpha_1, ..., \alpha_s \rangle \subseteq \operatorname{Aut}(N).$$

• A subgroup of order $\frac{|N|}{m}$ of N say

$$H_1 = \langle \eta_1, ..., \eta_r \rangle \subseteq N,$$

general elements $v_1, ..., v_s \in N$.

• Consider subgroups of $\operatorname{Hol}(N)$ of the form

$$H = \langle \eta_1, ..., \eta_r, v_1 \alpha_1, ..., v_s \alpha_s \rangle \subseteq \operatorname{Hol}(N).$$

• Then search for all v_i such that the group H is regular.

- Then search for all v_i such that the group H is regular.
- For *H* to satisfy $|\Theta(G)| = m$, it is necessary that for every relation $R(\alpha_1, ..., \alpha_s) = 1$ in H_2 we require

 $R(u_1(v_1\alpha_1)w_1,...,u_s(v_s\alpha_s)w_s)\in H_1$

for all $u_i, w_i \in H_1$.

- Then search for all v_i such that the group H is regular.
- For *H* to satisfy $|\Theta(G)| = m$, it is necessary that for every relation $R(\alpha_1, ..., \alpha_s) = 1$ in H_2 we require

$$R(u_1(v_1\alpha_1)w_1, ..., u_s(v_s\alpha_s)w_s) \in H_1$$

for all $u_i, w_i \in H_1$.

• For *H* to act freely on *N* it is necessary that for every word $W(\alpha_1, ..., \alpha_s) \neq 1$ in H_2 we require

 $W(u_1(v_1\alpha_1)w_1, ..., u_s(v_s\alpha_s)w_s)W(\alpha_1, ..., \alpha_s)^{-1} \notin H_1$

for all $u_i, w_i \in H_1$.

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group

$$C_p^2 \rtimes C_p = \langle \rho, \sigma, \tau \mid \rho^p = \sigma^p = \tau^p = 1, \ \sigma \rho = \rho \sigma, \ \tau \rho = \rho \tau, \ \tau \sigma = \rho \sigma \tau \rangle$$

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group

$$C_p^2 \rtimes C_p = \langle \rho, \sigma, \tau \mid \rho^p = \sigma^p = \tau^p = 1, \ \sigma \rho = \rho \sigma, \ \tau \rho = \rho \tau, \ \tau \sigma = \rho \sigma \tau \rangle$$

Let us denote by

$$\alpha_1 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \alpha_2 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \ \alpha_3 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group

$$C_p^2 \rtimes C_p = \langle \rho, \sigma, \tau \mid \rho^p = \sigma^p = \tau^p = 1, \ \sigma \rho = \rho \sigma, \ \tau \rho = \rho \tau, \ \tau \sigma = \rho \sigma \tau \rangle$$

Let us denote by

$$\alpha_1 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \alpha_2 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \ \alpha_3 \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We have $\langle \alpha_1, \alpha_2, \alpha_3 \rangle \cong C_p^2 \rtimes C_p$ is one of the p+1 Sylow *p*-subgroups of

$$\operatorname{Aut}(C_p^2 \rtimes C_p) \cong C_p^2 \rtimes \operatorname{GL}_2(\mathbb{F}_p).$$

٠

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$\begin{split} \left\langle \rho, \tau, \sigma \alpha_1^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_3^c \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \alpha_3^c \right\rangle \\ \text{for } a = 0, \dots, p-1, \ b, c = 1, \dots, p-1, \text{ with } c \neq 1, \\ \left\langle \rho, \sigma \tau^d, \tau \alpha_1^b \right\rangle, \left\langle \rho, \sigma \tau^d, \tau \alpha_1^a \alpha_3^c \right\rangle \\ \text{for } a, d = 0, \dots, p-1, \ b, c = 1, \dots, p-1 \text{ with } b \neq p-1, \ a+cd+1 \not\equiv 0 \text{ mod } p. \end{split}$$

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$\left\langle \rho, \tau, \sigma \alpha_1^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_3^c \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \alpha_3^c \right\rangle$$
for $a = 0, ..., p - 1, b, c = 1, ..., p - 1$, with $c \neq 1$,
$$\left\langle \rho, \sigma \tau^d, \tau \alpha_1^b \right\rangle, \left\langle \rho, \sigma \tau^d, \tau \alpha_1^a \alpha_3^c \right\rangle$$
and $a = 0, ..., p - 1$, where $a = 1$ with $b \neq r, r = 1$, $a \neq cd + 1 \neq 0$ modes

for a, d = 0, ..., p-1, b, c = 1, ..., p-1 with $b \neq p-1, a+cd+1 \not\equiv 0 \mod p$. Abelian:

$$\begin{split} \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_3 \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \alpha_3 \right\rangle, \left\langle \rho, \sigma \tau^d, \tau \alpha_1^{-(cd+1)} \alpha_3^c \right\rangle \\ \text{for } a, c, d = 0, \dots, p-1, \ b = 1, \dots, p-1, \end{split}$$

We shall multiply by p + 1 appropriately wherever a subgroup involves α_2 .

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$\left\langle \rho, \tau, \sigma \alpha_1^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_3^c \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \alpha_3^c \right\rangle$$

for $a = 0, ..., p - 1, b, c = 1, ..., p - 1$, with $c \neq 1$,
 $\left\langle \rho, \sigma \tau^d, \tau \alpha_1^b \right\rangle, \left\langle \rho, \sigma \tau^d, \tau \alpha_1^a \alpha_3^c \right\rangle$

for a, d = 0, ..., p-1, b, c = 1, ..., p-1 with $b \neq p-1, a+cd+1 \not\equiv 0 \mod p$. Abelian:

$$\begin{split} \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_3 \right\rangle, \left\langle \rho, \tau, \sigma \alpha_1^a \alpha_2^b \alpha_3 \right\rangle, \left\langle \rho, \sigma \tau^d, \tau \alpha_1^{-(cd+1)} \alpha_3^c \right\rangle \\ \text{for } a, c, d = 0, ..., p-1, \ b = 1, ..., p-1, \end{split}$$

We shall multiply by p + 1 appropriately wherever a subgroup involves α_2 .

Skew Braces:

$$\begin{split} &\langle \rho, \tau, \sigma \alpha_3 \rangle , \langle \rho, \tau, \sigma \alpha_2 \alpha_3 \rangle \cong C_p^3, \ \langle \rho, \tau, \sigma \alpha_1 \rangle , \langle \rho, \tau, \sigma \alpha_2 \rangle , \\ &\langle \rho, \tau, \sigma \alpha_3^c \rangle , \langle \rho, \tau, \sigma \alpha_2 \alpha_3^c \rangle \cong M_1 \text{ for } c = 2, ..., p - 1. \end{split}$$

Hopf-Galois Structures of Heisenberg Type (p^2)

Nonabelian:

 $\langle \rho, u\alpha_1, v\alpha_3 \rangle$ for $A = \begin{pmatrix} u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p)$ with $v_2 - u_3 - \det(A) \not\equiv 0 \mod p$, $\langle \rho, \tau^{x_3}\alpha_1, y\alpha_2\alpha_3^a \rangle$ for $a, y_3 = 0, \dots, p-1, y_2, x_3 = 1, \dots, p-1$ with $y_2 - ax_3 + x_3y_2 \not\equiv 0 \mod p$,

Hopf-Galois Structures of Heisenberg Type (p^2)

Nonabelian:

 $\begin{array}{l} \langle \rho, u\alpha_1, v\alpha_3 \rangle \mbox{ for } A = \begin{pmatrix} u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p) \mbox{ with } v_2 - u_3 - \det(A) \not\equiv 0 \mbox{ mod } p, \\ \langle \rho, \tau^{x_3} \alpha_1, y\alpha_2 \alpha_3^a \rangle \mbox{ for } a, y_3 = 0, ..., p - 1, \ y_2, x_3 = 1, ..., p - 1 \\ \mbox{ with } y_2 - ax_3 + x_3y_2 \not\equiv 0 \mbox{ mod } p, \end{array}$

Abelian:

$$\langle \rho, u\alpha_1, v\alpha_3 \rangle \text{ for } A = \begin{pmatrix} u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p) \text{ with } v_2 = u_3 + \det(A), \\ \left\langle \rho, \tau^{x_3}\alpha_1, \sigma^{y_2}\tau^{y_3}\alpha_2\alpha_3^{(1+x_3)y_2x_3^{-1}} \right\rangle \text{ for } y_3 = 0, ..., p-1, \ y_2, x_3 = 1, ..., p-1,$$

Hopf-Galois Structures of Heisenberg Type (p^2)

Nonabelian:

$$\begin{array}{l} \langle \rho, u\alpha_1, v\alpha_3 \rangle \ \text{for } A = \begin{pmatrix} u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p) \ \text{with } v_2 - u_3 - \det(A) \not\equiv 0 \ \text{mod } p, \\ \langle \rho, \tau^{x_3}\alpha_1, y\alpha_2\alpha_3^a \rangle \ \text{for } a, y_3 = 0, ..., p - 1, \ y_2, x_3 = 1, ..., p - 1 \\ \text{with } y_2 - ax_3 + x_3y_2 \not\equiv 0 \ \text{mod } p, \end{array}$$

Abelian:

$$\begin{array}{l} \langle \rho, u\alpha_1, v\alpha_3 \rangle \ \text{for } A = \begin{pmatrix} u_2 \ v_2 \\ u_3 \ v_3 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p) \ \text{with } v_2 = u_3 + \det(A), \\ \left\langle \rho, \tau^{x_3}\alpha_1, \sigma^{y_2}\tau^{y_3}\alpha_2\alpha_3^{(1+x_3)y_2x_3^{-1}} \right\rangle \ \text{for } y_3 = 0, ..., p-1, \ y_2, x_3 = 1, ..., p-1, \end{array}$$

Skew braces:

$$\langle \rho, \sigma \alpha_1, \sigma^{u_3} \tau^{u_4} \alpha_3 \rangle, \langle \rho, \tau^{-u_5} \alpha_1, \sigma^{u_5} \alpha_3 \rangle, \langle \rho, \tau^{x_3} \alpha_1, \sigma \alpha_2 \alpha_3^a \rangle \cong M_1,$$

$$\langle \rho, \sigma \alpha_1, \sigma^{u_2} \tau^{u_2} \alpha_3 \rangle, \langle \rho, \tau^{-2} \alpha_1, \sigma^2 \alpha_3 \rangle, \left\langle \rho, \tau^{x_3} \alpha_1, \sigma \alpha_2 \alpha_3^{(1+x_3)x_3^{-1}} \right\rangle \cong C_p^3 \text{ for}$$

$$a, u_3 = 0, \dots, p-1, \ u_2, u_4, u_5, x_3, = 1, \dots, p-1$$

$$\text{ with } u_5 \neq 2, \ u_3 - u_4, \ ax_3 - (1+x_3) \not\equiv 0 \ \text{mod } p.$$

$$41/4$$

Hopf-Galois Structures of Heisenberg Type (p^3)

Abelian:

$$\left\langle \rho^{u_1} \tau^{-2} \alpha_1, \rho^{v_1} \tau^{1-u_1} \alpha_2, \rho^{w_1} \sigma^2 \tau^{w_3} \alpha_3 \right\rangle \cong M_1$$

for $u_1, v_1, w_1, w_3 = 0, ..., p - 1$ with $v_1 + \frac{1}{2}u_1(1 - u_1) \not\equiv 0 \mod p$, Skew braces:

$$\left\langle \tau^{-2}\alpha_1, \rho^s \tau \alpha_2, \sigma^2 \tau^{t_3} \alpha_3 \right\rangle \cong M_1 \text{ for } t_3 = 0, 1, \ s = 1, \delta,$$

Example

Let
$$p > 2$$
, $n > 1$, and $C_{p^n} = \langle \sigma \mid \sigma^{p^n} = 1 \rangle$.

Example

Let
$$p > 2$$
, $n > 1$, and $C_{p^n} = \langle \sigma \mid \sigma^{p^n} = 1 \rangle$. Then

$$\operatorname{Hol}\left(C_{p^{n}}\right) = \left\langle \sigma \right\rangle \rtimes \left\langle \beta, \gamma \right\rangle$$

with $\beta(\sigma) = \sigma^{p+1}$. Then the *trivial* (skew) brace is $\langle \sigma \rangle$,

Example

Let
$$p > 2$$
, $n > 1$, and $C_{p^n} = \langle \sigma \mid \sigma^{p^n} = 1 \rangle$. Then

$$\operatorname{Hol}\left(C_{p^{n}}\right) = \langle \sigma \rangle \rtimes \langle \beta, \gamma \rangle$$

with $\beta(\sigma) = \sigma^{p+1}$. Then the *trivial* (skew) brace is $\langle \sigma \rangle$, and the *nontrivial* (skew) braces are given by

$$\left\langle \sigma \beta^{p^m} \right\rangle \cong C_{p^n} \text{ for } m = 0, ..., n-2.$$

Example

Let
$$p > 2$$
, $n > 1$, and $C_{p^n} = \langle \sigma \mid \sigma^{p^n} = 1 \rangle$. Then

$$\operatorname{Hol}\left(C_{p^{n}}\right) = \langle \sigma \rangle \rtimes \langle \beta, \gamma \rangle$$

with $\beta(\sigma) = \sigma^{p+1}$. Then the *trivial* (skew) brace is $\langle \sigma \rangle$, and the *nontrivial* (skew) braces are given by

$$\left\langle \sigma \beta^{p^m} \right\rangle \cong C_{p^n} \text{ for } m = 0, ..., n-2.$$

We also have

$$\operatorname{Aut}_{\mathcal{B}r}\left(\left\langle\sigma\beta^{p^{m}}\right\rangle\right) = \left\langle\beta^{p^{n-m-2}}\right\rangle \text{ for } m = 0, ..., n-2.$$
Question

How general is the pattern $\tilde{e}(G, N) = \tilde{e}(N, G)$?

Question

How general is the pattern $\tilde{e}(G, N) = \tilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta : Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta] = 1.$

Question

How general is the pattern $\tilde{e}(G, N) = \tilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta : Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta] = 1.$

• We can form an $(P \rtimes_{\alpha} Q)$ -skew brace of type $P \rtimes_{\beta} Q$.

Question

How general is the pattern $\tilde{e}(G, N) = \tilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta : Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta] = 1.$

- We can form an $(P \rtimes_{\alpha} Q)$ -skew brace of type $P \rtimes_{\beta} Q$.
- **2** And an $(P \rtimes_{\beta} Q^{\mathrm{op}})$ -skew brace of type $P \rtimes_{\alpha} Q$.

Question

How general is the pattern $\tilde{e}(G, N) = \tilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta : Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta] = 1.$

- We can form an $(P \rtimes_{\alpha} Q)$ -skew brace of type $P \rtimes_{\beta} Q$.
- **2** And an $(P \rtimes_{\beta} Q^{\mathrm{op}})$ -skew brace of type $P \rtimes_{\alpha} Q$.

What is the relationship between $\tilde{e}(G, N)$ and $\tilde{e}(N, G)$ for N which is a general extensions of two groups?

• Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^n} \rtimes C_p$.

- Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^n} \rtimes C_p$.
- Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.

Scopes and Work in Progress

- Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^n} \rtimes C_p$.
- Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.
- Extend results to study skew braces of type $(C_{p^e} \times C_{p^f}) \rtimes C_{p^g}$ for natural numbers e, f, g.

- Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^n} \rtimes C_p$.
- Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.
- Extend results to study skew braces of type $(C_{p^e} \times C_{p^f}) \rtimes C_{p^g}$ for natural numbers e, f, g.
- Study skew braces whose type is an extension of two abelian groups. Does the pattern

$$\widetilde{e}(G,N) = \widetilde{e}(N,G)$$

still hold?

45/47

Thank you for your attention!

46/47

- [NZ18] Kayvan Nejabati Zenouz. On Hopf-Galois Structures and Skew Braces of Order p³. The University of Exeter, PhD Thesis, Funded by EPSRC DTG, January 2018. https://ore.exeter.ac.uk/repository/handle/10871/32248.
- [NZ19] Kayvan Nejabati Zenouz. Skew Braces and Hopf-Galois Structures of Heisenberg Type. Journal of Algebra, 524:187–225, April 2019. https://doi.org/10.1016/j.jalgebra.2019.01.012.