The Yang-Baxter Equation and Hopf-Galois Theory via Skew Braces

Kayvan Nejabati Zenouz ${ }^{1}$
Oxford Brookes University
Braces and Hopf-Galois Theory
Keele University

$$
\text { June 18, } 2019
$$

[^0]
Contents

(1) Introduction
(2) The Yang-Baxter Equation
(3) Skew Braces

- Skew Braces and the YBE
- Relation to Rings

4 Hopf-Galois Structures

- Automorphism Groups of Skew Braces
(5) Classification of Hopf-Galois Structures and Skew Braces
- Strategy for the Proofs
(6) Skew Braces of Semi-direct Product Type
(7) Scopes and Work in Progress

Outline

Introduction to

Outline

Introduction to

The Yang-Baxter Equation

Outline

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

Outline

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

via

Skew Braces

Outline

Introduction to

The Yang-Baxter Equation

and its connection to

Hopf-Galois Theory

via

Skew Braces

Classification of

Hopf-Galois Structures and Skew Braces of order p^{3}

The Yang-Baxter Equation

For a vector space V, an element

$$
R \in \mathrm{GL}(V \otimes V)
$$

is said to satisfy the Yang-Baxter equation (YBE) if

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

holds.

For a vector space V, an element

$$
R \in \mathrm{GL}(V \otimes V)
$$

is said to satisfy the Yang-Baxter equation (YBE) if

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

holds.
This equation can be depicted by

The Yang-Baxter equation appeared in work of Yang and Baxter in statistical mechanics and mathematical physics.

The Yang-Baxter equation appeared in work of Yang and Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in quantum group theory with applications in

The Yang-Baxter equation appeared in work of Yang and Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in quantum group theory with applications in

integrable systems

The Yang-Baxter equation appeared in work of Yang and Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in quantum group theory with applications in

The Yang-Baxter equation appeared in work of Yang and Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in quantum group theory with applications in

integrable systems

knot theory

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of solutions arising from the set-theoretic version of this equation.

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of solutions arising from the set-theoretic version of this equation.

Definition

Let X be a nonempty set and

$$
\begin{aligned}
r: X \times X & \longrightarrow X \times X \\
(x, y) & \longmapsto\left(f_{x}(y), g_{y}(x)\right)
\end{aligned}
$$

a bijection.

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of solutions arising from the set-theoretic version of this equation.

Definition

Let X be a nonempty set and

$$
\begin{aligned}
r: X \times X & \longrightarrow X \times X \\
(x, y) & \longmapsto\left(f_{x}(y), g_{y}(x)\right)
\end{aligned}
$$

a bijection. Then (X, r) is a set-theoretic solution of YBE if

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

holds.

Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of solutions arising from the set-theoretic version of this equation.

Definition

Let X be a nonempty set and

$$
\begin{aligned}
r: X \times X & \longrightarrow X \times X \\
(x, y) & \longmapsto\left(f_{x}(y), g_{y}(x)\right)
\end{aligned}
$$

a bijection. Then (X, r) is a set-theoretic solution of YBE if

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

holds. The solution (X, r) is called non-degenerate if $f_{x}, g_{x} \in \operatorname{Perm}(X)$ for all $x \in X$ and involutive if $r^{2}=\mathrm{id}$.

Set-Theoretic Yang-Baxter Equation

Examples

Let X be a nonempty set.
(1) The map $r(x, y)=(y, x)$.

Set-Theoretic Yang-Baxter Equation

Examples

Let X be a nonempty set.
(1) The map $r(x, y)=(y, x)$.
(2) Let $f, g: X \longrightarrow X$ be bijections with $f g=g f$. Then

$$
r(x, y)=(f(y), g(x))
$$

gives a non-degenerate solution, which is involutive if and only if $f=g^{-1}$.

Set-Theoretic Yang-Baxter Equation

Examples

Let X be a nonempty set.
(1) The map $r(x, y)=(y, x)$.
(2) Let $f, g: X \longrightarrow X$ be bijections with $f g=g f$. Then

$$
r(x, y)=(f(y), g(x))
$$

gives a non-degenerate solution, which is involutive if and only if $f=g^{-1}$.
(3) For any group structure on X the map

$$
r(x, y)=\left(y, y x y^{-1}\right)
$$

(9) If $(R,+, \cdot)$ is a radical ring with circle operation
$a \circ b=a+a b+b$ then $r(x, y)=\left(x y+y,(x y+y)^{\circ-1} \circ x \circ y\right)$.

Skew Braces

Definition

A (left) skew brace is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups

Skew Braces

Definition

A (left) skew brace is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$
a \odot(b \oplus c)=(a \odot b) \ominus a \oplus(a \odot c)
$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus.

Skew Braces

Definition

A (left) skew brace is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$
a \odot(b \oplus c)=(a \odot b) \ominus a \oplus(a \odot c)
$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus.

Remark

A skew brace is called two-sided if

$$
(b \oplus c) \odot a=(b \odot a) \ominus a \oplus(c \odot a)
$$

Skew Braces

Definition

A (left) skew brace is a triple (B, \oplus, \odot) which consists of a set B together with two operations \oplus and \odot so that (B, \oplus) and (B, \odot) are groups such that for all $a, b, c \in B$:

$$
a \odot(b \oplus c)=(a \odot b) \ominus a \oplus(a \odot c)
$$

where $\ominus a$ is the inverse of a with respect to the operation \oplus.

Remark

A skew brace is called two-sided if

$$
(b \oplus c) \odot a=(b \odot a) \ominus a \oplus(c \odot a)
$$

Interesting for ring theorists: $0=1$.

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a G-skew brace of type N.

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a G-skew brace of type N.
- A skew brace (B, \oplus, \odot) is called a brace if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a G-skew brace of type N.
- A skew brace (B, \oplus, \odot) is called a brace if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings.

Skew Braces

Example

Any group (B, \oplus) with

$$
a \odot b=a \oplus b \quad(\text { similarly with } a \odot b=b \oplus a)
$$

is a skew brace. This is the trivial skew brace structure.

Notation

- We call a skew brace (B, \oplus, \odot) such that $(B, \oplus) \cong N$ and $(B, \odot) \cong G$ a G-skew brace of type N.
- A skew brace (B, \oplus, \odot) is called a brace if (B, \oplus) is abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation of radical rings. They provide non-degenerate, involutive set-theoretic solutions of the YBE.

Skew Braces: History

Skew braces generalise
braces and were introduced by Guarnieri and Vendramin in 2017.

Skew Braces: History

Skew braces generalise braces and were introduced by Guarnieri and
Vendramin in 2017.

They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Skew Braces: History

Skew braces generalise braces and were introduced by Guarnieri and
Vendramin in 2017.

They provide non-degenerate set-theoretic solutions of the Yang-Baxter equation.

Their connection to ring theory and Hopf-Galois structures was studied by Bachiller, Byott, Smoktunowicz, and Vendramin.

Skew Braces and the YBE

Theorem (L. Guarnieri and L. Vendramin)

Let (B, \oplus, \odot) be a skew brace. Then the map

$$
\begin{aligned}
r_{B}: B \times B & \longrightarrow B \times B \\
(a, b) & \longmapsto\left(\ominus a \oplus(a \odot b),(\ominus a \oplus(a \odot b))^{-1} \odot a \odot b\right)
\end{aligned}
$$

is a non-degenerate set-theoretic solution of the YBE, which is involutive if and only if (B, \oplus, \odot) is a brace.

Relation to Rings

- Given a skew brace (B, \oplus, \odot) define

$$
a \otimes b=\ominus a \oplus(a \odot b) \ominus b
$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.

Relation to Rings

- Given a skew brace (B, \oplus, \odot) define

$$
a \otimes b=\ominus a \oplus(a \odot b) \ominus b
$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.

- However, if B is a two-sided brace, then (B, \oplus, \otimes) is a radical ring, Rump (2007).
- Given a skew brace (B, \oplus, \odot) define

$$
a \otimes b=\ominus a \oplus(a \odot b) \ominus b
$$

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study (B, \oplus, \otimes) using ring theoretic methods.

- However, if B is a two-sided brace, then (B, \oplus, \otimes) is a radical ring, Rump (2007).
- Conversely, if (B, \oplus, \otimes) is a radical ring, then (B, \oplus, \circ), where

$$
a \circ b=a \oplus a \otimes b \oplus b
$$

is a two-sided brace, Rump (2007).

Hopf-Galois Theory

Two aims in developing the theory:

Hopf-Galois Theory

Two aims in developing the theory:

Galois theory for inseparable extensions of fields.

Hopf-Galois Theory

Two aims in developing the theory:

Galois theory for inseparable extensions of fields.

Studying rings of integers of extensions of number fields.

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Normal Basis Theorem
L is a free $K[G]$-module of rank one.

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Normal Basis Theorem

L is a free $K[G]$-module of rank one.

- Assume L / K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_{p}).

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Normal Basis Theorem

L is a free $K[G]$-module of rank one.

- Assume L / K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_{p}).
- Denote by \mathcal{O}_{L} and \mathcal{O}_{K} the rings of integers of L and K, respectively.

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Normal Basis Theorem

L is a free $K[G]$-module of rank one.

- Assume L / K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_{p}).
- Denote by \mathcal{O}_{L} and \mathcal{O}_{K} the rings of integers of L and K, respectively.
- Then \mathcal{O}_{L} is also a module over $\mathcal{O}_{K}[G]$.

Hopf-Galois Structures: Motivations

For simplicity we assume L / K is a Galois extension of fields with Galois group G.

Normal Basis Theorem

L is a free $K[G]$-module of rank one.

- Assume L / K is an extension of global or local fields (e.g., extensions of \mathbb{Q} or \mathbb{Q}_{p}).
- Denote by \mathcal{O}_{L} and \mathcal{O}_{K} the rings of integers of L and K, respectively.
- Then \mathcal{O}_{L} is also a module over $\mathcal{O}_{K}[G]$.
- Can \mathcal{O}_{L} be free over $\mathcal{O}_{K}[G]$?
... No in general.

Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Definition

A Hopf-Galois structure on L / K consists of a finite dimensional cocommutative K-Hopf algebra H together with an action on L such that the R-module homomorphism

$$
\begin{aligned}
& j: L \otimes_{K} H \longrightarrow \operatorname{End}_{K}(L) \\
& \quad s \otimes h \longmapsto(t \longmapsto \operatorname{sh}(t)) \text { for } s, t \in L, h \in H
\end{aligned}
$$

is an isomorphism.

Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with an action on L.

Definition

A Hopf-Galois structure on L / K consists of a finite dimensional cocommutative K-Hopf algebra H together with an action on L such that the R-module homomorphism

$$
\begin{aligned}
& j: L \otimes_{K} H \longrightarrow \operatorname{End}_{K}(L) \\
& \quad s \otimes h \longmapsto(t \longmapsto \operatorname{sh}(t)) \text { for } s, t \in L, h \in H
\end{aligned}
$$

is an isomorphism.

The group algebra $K[G]$ endows L / K with the classical Hopf-Galois structure.

Hopf-Galois Structures: Application

- Assume L / K is a Galois extension of (local/global) fields with Galois group G.

Hopf-Galois Structures: Application

- Assume L / K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L / K with a Hopf-Galois structure.

Hopf-Galois Structures: Application

- Assume L / K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L / K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_{L} in H by

$$
\mathfrak{A}_{H}=\left\{\alpha \in H \mid \alpha\left(\mathcal{O}_{L}\right) \subseteq \mathcal{O}_{L}\right\} .
$$

Hopf-Galois Structures: Application

- Assume L / K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L / K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_{L} in H by

$$
\mathfrak{A}_{H}=\left\{\alpha \in H \mid \alpha\left(\mathcal{O}_{L}\right) \subseteq \mathcal{O}_{L}\right\} .
$$

- Can \mathcal{O}_{L} be free over \mathfrak{A}_{H} ?

Hopf-Galois Structures: Application

- Assume L / K is a Galois extension of (local/global) fields with Galois group G.
- Suppose H endows L / K with a Hopf-Galois structure.
- Define the associated order of \mathcal{O}_{L} in H by

$$
\mathfrak{A}_{H}=\left\{\alpha \in H \mid \alpha\left(\mathcal{O}_{L}\right) \subseteq \mathcal{O}_{L}\right\} .
$$

- Can \mathcal{O}_{L} be free over \mathfrak{A}_{H} ?
- How to find Hopf-Galois structures?

Hopf-Galois Structures:

A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L / K correspond bijectively to regular subgroups of $\operatorname{Perm}(G)$ which are normalised by the image of G, as left translations, inside $\operatorname{Perm}(G)$.

Hopf-Galois Structures:

A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L / K correspond bijectively to regular subgroups of $\operatorname{Perm}(G)$ which are normalised by the image of G, as left translations, inside $\operatorname{Perm}(G)$.

Every K-Hopf algebra which endows L / K with a Hopf-Galois structure is of the form $L[N]^{G}$ for some regular subgroup $N \subseteq \operatorname{Perm}(G)$ normalised by the left translations.

Hopf-Galois Structures: Byott's Translation

Problem

The group $\operatorname{Perm}(G)$ can be large.

Hopf-Galois Structures: Byott's Translation

Problem

The group Perm (G) can be large.

Instead of working with groups of permutations, work with holomorphs.

Hopf-Galois Structures: Byott's Translation

Problem

The group Perm (G) can be large.

Instead of working with groups of permutations, work with holomorphs.

Theorem (Byott 1996)

Let G and N be finite groups. There exists a bijection between the sets
$\mathcal{N}=\{\alpha: N \hookrightarrow \operatorname{Perm}(G) \mid \alpha(N)$ is regular and normalised by $G\}$

$$
\mathcal{G}=\{\beta: G \hookrightarrow \operatorname{Hol}(N) \mid \beta(G) \text { is regular }\},
$$

where $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$.

Hopf-Galois Structures: Byott's Translation

Enumerating Hopf-Galois Structures (Byott)

Using Byott's translation one can show that
\sharp HGS on L / K of type $N=$
$\left.\left.\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|} \right\rvert\,\{H \subseteq \operatorname{Hol}(N)$ regular with $H \cong G\} \right\rvert\,$.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.
- Byott $(1996,2004)$ studied the problem for $|G|=p^{2}, p q$, also when G is a nonabelian simple group.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.
- Byott $(1996,2004)$ studied the problem for $|G|=p^{2}, p q$, also when G is a nonabelian simple group.
\checkmark Carnahan and Childs $(1999,2005)$ studied Hopf-Galois structures for $G=C_{p}^{n}$ and $G=S_{n}$.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.
- Byott $(1996,2004)$ studied the problem for $|G|=p^{2}, p q$, also when G is a nonabelian simple group.
- Carnahan and Childs (1999, 2005) studied Hopf-Galois structures for $G=C_{p}^{n}$ and $G=S_{n}$.
- Alabadi and Byott (2017) studied the problem for $|G|$ is squarefree.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.
- Byott $(1996,2004)$ studied the problem for $|G|=p^{2}, p q$, also when G is a nonabelian simple group.
\checkmark Carnahan and Childs $(1999,2005)$ studied Hopf-Galois structures for $G=C_{p}^{n}$ and $G=S_{n}$.
- Alabadi and Byott (2017) studied the problem for $|G|$ is squarefree.
- Nejabati Zenouz (2018) Hopf-Galois structures for $|G|=p^{3}$ where p is a prime number.

Hopf-Galois Structures: Some Results

- Byott (1996) showed if $|G|=n$, then L / K a unique Hopf-Galois structure iff $\operatorname{gcd}(n, \phi(n))=1$.
- Kohl $(1998,2019)$ classified Hopf-Galois structures for $G=C_{p^{n}}, D_{n}$ for a prime $p>2$.
- Byott $(1996,2004)$ studied the problem for $|G|=p^{2}, p q$, also when G is a nonabelian simple group.
- Carnahan and Childs $(1999,2005)$ studied Hopf-Galois structures for $G=C_{p}^{n}$ and $G=S_{n}$.
- Alabadi and Byott (2017) studied the problem for $|G|$ is squarefree.
- Nejabati Zenouz (2018) Hopf-Galois structures for $|G|=p^{3}$ where p is a prime number.
\checkmark Crespo and Salguero extensions of degree $C_{p^{n}} \rtimes C_{D}$, Samways cyclic extensions, and Tsang S_{n}-extensions.

Hopf-Galois Structures of Order p^{3} for $p>3$

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L / K of type N, $e(G, N)$, is given by

Hopf-Galois Structures of Order p^{3} for $p>3$

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L / K of type N, $e(G, N)$, is given by

$e(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	p^{2}	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$
C_{p}^{3}	-	-	$\left(p^{4}+p^{3}-1\right) p^{2}$	$\left(p^{3}-1\right)\left(p^{2}+p-1\right) p^{2}$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$\left(p^{2}+p-1\right) p^{2}$	$\left(2 p^{3}-3 p+1\right) p^{2}$	-
$C_{p^{2}} \rtimes C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$

Column $C_{p}^{2} \rtimes C_{p}$ J. Algebra [cf. NZ19, Apr 2019]. Cases $p=2,3$ are also treated in PhD thesis.

Hopf-Galois Structures of Order p^{3} for $p>3$

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L / K of type N, $e(G, N)$, is given by

$e(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	p^{2}	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$
C_{p}^{3}	-	-	$\left(p^{4}+p^{3}-1\right) p^{2}$	$\left(p^{3}-1\right)\left(p^{2}+p-1\right) p^{2}$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$\left(p^{2}+p-1\right) p^{2}$	$\left(2 p^{3}-3 p+1\right) p^{2}$	-
$C_{p^{2}} \rtimes C_{p}$	-	$(2 p-1) p^{2}$	-	-	$(2 p-1)(p-1) p^{2}$

Column $C_{p}^{2} \rtimes C_{p}$ J. Algebra [cf. NZ19, Apr 2019]. Cases $p=2,3$ are also treated in PhD thesis.

Remark

Note $p^{2} \mid e(G, N)$ and

$$
|\operatorname{Aut}(N)| e(G, N)=|\operatorname{Aut}(G)| e(N, G) .
$$

Corollaries

Denote by

$$
e(G)=\sum_{N} e(G, N) \text { and } \bar{e}(N)=\sum_{G} e(G, N)
$$

Corollaries

Denote by

$$
e(G)=\sum_{N} e(G, N) \text { and } \bar{e}(N)=\sum_{G} e(G, N)
$$

Then we have

Corollaries

Denote by

$$
e(G)=\sum_{N} e(G, N) \text { and } \bar{e}(N)=\sum_{G} e(G, N)
$$

Then we have

G	$e(G)$	$\bar{e}(G)$
$C_{p^{3}}$	p^{2}	p^{2}
$C_{p^{2}} \times C_{p}$	$(2 p-1) p^{3}$	$2(2 p-1) p^{2}$
C_{p}^{3}	$\left(p^{4}+2 p^{3}-p-1\right) p^{3}$	$\left(p^{4}+p^{3}+p^{2}+p-2\right) p^{2}$
$C_{p}^{2} \rtimes C_{p}$	$\left(2 p^{2}+p-2\right) p^{3}$	$\left(p^{5}+p^{4}+p^{3}-p^{2}-4 p+2\right) p^{2}$
$C_{p^{2}} \rtimes C_{p}$	$(2 p-1) p^{3}$	$2(2 p-1)(p-1) p^{2}$
Total		$\left(p^{5}+2 p^{4}+2 p^{3}+4 p^{2}-5 p+1\right) p^{2}$

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures.

Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures.

classes of certain regular subgroups of Perm(G) under conjugation by elements of Aut(G)

From Skew Braces to Hopf-Galois Structures

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right)
\end{aligned}
$$

which is a regular embedding.

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right)
\end{aligned}
$$

which is a regular embedding.

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right)
\end{aligned}
$$

which is a regular embedding.

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L / K with Galois group (B, \odot).

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right)
\end{aligned}
$$

which is a regular embedding.

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L / K with Galois group (B, \odot).
- Thus $L[\operatorname{Im} d]^{(B, \odot)}$ endows L / K with a Hopf-Galois structure of type (B, \oplus).

From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \odot) is a skew brace.
- Then (B, \oplus) acts on (B, \odot) and we find

$$
\begin{aligned}
d:(B, \oplus) & \longrightarrow \operatorname{Perm}(B, \odot) \\
a & \longmapsto\left(d_{a}: b \longmapsto a \oplus b\right)
\end{aligned}
$$

which is a regular embedding.

- The skew brace property implies that $\operatorname{Im} d$ is normalised by the left translations.
- Fix L / K with Galois group (B, \odot).
- Thus $L[\operatorname{Im} d]^{(B, \odot)}$ endows L / K with a Hopf-Galois structure of type (B, \oplus).
- Isomorphic skew braces correspond to conjugate regular subgroups.

From Hopf-Galois Structures to Skew Braces

- Suppose H endows L / K with a Hopf-Galois structure.

From Hopf-Galois Structures to Skew Braces

- Suppose H endows L / K with a Hopf-Galois structure.
- Then $H=L[N]^{(B, \odot)}$ for some $N \subseteq \operatorname{Perm}(B, \odot)$ which is a regular subgroup normalised the left translations.

From Hopf-Galois Structures to Skew Braces

- Suppose H endows L / K with a Hopf-Galois structure.
- Then $H=L[N]^{(B, \odot)}$ for some $N \subseteq \operatorname{Perm}(B, \odot)$ which is a regular subgroup normalised the left translations.
- N is a regular subgroup, implies that we have a bijection

$$
\begin{gathered}
\phi: N \longrightarrow(B, \odot) \\
n \longmapsto n \cdot 1 .
\end{gathered}
$$

From Hopf-Galois Structures to Skew Braces

- Suppose H endows L / K with a Hopf-Galois structure.
- Then $H=L[N]^{(B, \odot)}$ for some $N \subseteq \operatorname{Perm}(B, \odot)$ which is a regular subgroup normalised the left translations.
- N is a regular subgroup, implies that we have a bijection

$$
\begin{aligned}
\phi: N & \longrightarrow(B, \odot) \\
n & \longmapsto n \cdot 1 .
\end{aligned}
$$

- Define

$$
a \oplus b=\phi\left(\phi^{-1}(a) \phi^{-1}(b)\right) \text { for } a, b \in(B, \odot) .
$$

From Hopf-Galois Structures to Skew Braces

- Suppose H endows L / K with a Hopf-Galois structure.
- Then $H=L[N]^{(B, \odot)}$ for some $N \subseteq \operatorname{Perm}(B, \odot)$ which is a regular subgroup normalised the left translations.
- N is a regular subgroup, implies that we have a bijection

$$
\begin{gathered}
\phi: N \longrightarrow(B, \odot) \\
n \longmapsto n \cdot 1 .
\end{gathered}
$$

- Define

$$
a \oplus b=\phi\left(\phi^{-1}(a) \phi^{-1}(b)\right) \text { for } a, b \in(B, \odot) .
$$

- N is normalised by the left translations implies that (B, \oplus, \odot) is a skew brace of type N corresponding to H.

Skew Braces and Hopf-Galois Structures Correspondence

$\left\{\begin{array}{c}\text { isomorphism classes } \\ \text { of } G \text {-skew braces, } \\ \text { i.e., with }(B, \odot) \cong G\end{array}\right\} \stackrel{\text { iij }}{\sharp \rightarrow}\left\{\begin{array}{c}\text { classes of Hopf-Galois structures } \\ \text { on } L / K \text { under } L\left[N_{1}\right]^{G} \sim L\left[N_{2}\right]^{G} \\ \text { if } N_{2}=\alpha N_{1} \alpha^{-1} \text { for some } \\ \alpha \in \operatorname{Aut}(G)\end{array}\right\}$

Skew Braces and Hopf-Galois Structures Correspondence

$\left\{\begin{array}{c}\text { isomorphism classes } \\ \text { of } G \text {-skew braces, } \\ \text { i.e., with }(B, \odot) \cong G\end{array}\right\} \stackrel{\text { iij }}{\rightsquigarrow}\left\{\begin{array}{c}\text { classes of Hopf-Galois structures } \\ \text { on } L / K \text { under } L\left[N_{1}\right]^{G} \sim L\left[N_{2}\right]^{G} \\ \text { if } N_{2}=\alpha N_{1} \alpha^{-1} \text { for some } \\ \alpha \in \operatorname{Aut}(G)\end{array}\right\}$
i.e., if (B, \oplus, \odot) is a skew brace of type, then we get the
following Hopf-Galois structures on L / K

$$
\left\{L\left[\alpha(\operatorname{Im} d) \alpha^{-1}\right]^{(B, \odot)} \mid \alpha \in \operatorname{Aut}(B, \odot)\right\} .
$$

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]
 In particular, if $f:(B, \oplus, \odot) \longrightarrow(B, \oplus, \odot)$ is an automorphism,

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]

In particular, if $f:(B, \oplus, \odot) \longrightarrow(B, \oplus, \odot)$ is an automorphism, then we have

$$
(B, \oplus) \stackrel{d}{\longrightarrow} \operatorname{Perm}(B, \odot)
$$

Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary 2.3]

In particular, if $f:(B, \oplus, \odot) \longrightarrow(B, \oplus, \odot)$ is an automorphism, then we have

$$
\begin{gathered}
(B, \oplus) \xrightarrow{d} \operatorname{Perm}(B, \odot) \\
\downarrow^{\downarrow} \downarrow f C_{f} \\
(B, \oplus) \xrightarrow{d} \operatorname{Perm}(B, \odot) ;
\end{gathered}
$$

using this observation we find

$$
\operatorname{Aut}_{\mathcal{B} r}(B, \oplus, \odot) \cong\left\{\alpha \in \operatorname{Aut}(B, \odot) \mid \alpha(\operatorname{Im} d) \alpha^{-1} \subseteq \operatorname{Im} d\right\}
$$

Classification of Hopf-Galois Structures and Skew Braces: Theoretical

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify elements of the set

$$
\mathcal{S}(G, N)=\{H \subseteq \operatorname{Perm}(G) \mid H \text { is regular, NLT, } H \cong N\},
$$

and extract a maximal subset whose elements are not conjugate by any element of $\operatorname{Aut}(G)$.

Classification of Hopf-Galois Structures and Skew Braces: Theoretical

Hopf-Galois Structures Parametrised by Skew Braces [cf. NZ19, Corollary 2.4]

Denote by B_{G}^{N} the isomorphism class of a G-skew brace of type N given by (B, \oplus, \odot).

Classification of Hopf-Galois Structures and Skew

 Braces: Theoretical
Hopf-Galois Structures Parametrised by Skew Braces [cf. NZ19, Corollary 2.4]

Denote by B_{G}^{N} the isomorphism class of a G-skew brace of type N given by (B, \oplus, \odot). Then the number of Hopf-Galois structures on L / K of type N is given by

$$
e(G, N)=\sum_{B_{G}^{N}} \frac{|\operatorname{Aut}(G)|}{\left|\operatorname{Aut}_{\mathcal{B} r}\left(B_{G}^{N}\right)\right|} .
$$

Classification of Hopf-Galois Structures and Skew

 Braces: PracticalAgain we would like to work with holomorphs instead of the permutation groups.

Classification of Hopf-Galois Structures and Skew Braces: Practical

Again we would like to work with holomorphs instead of the permutation groups.

For a skew brace (B, \oplus, \odot) consider the action of (B, \odot) on (B, \oplus) by $(a, b) \longmapsto a \odot b$. This yeilds to a map

$$
\begin{aligned}
m:(B, \odot) & \longrightarrow \operatorname{Hol}(B, \oplus) \\
a & \longmapsto\left(m_{a}: b \longmapsto a \odot b\right)
\end{aligned}
$$

which is a regular embedding.

Skew Braces and Regular Subgroups of Holomorph Correspondence

Bachiller, Byott, Vendramin:
$\left\{\begin{array}{c}\text { isomorphism classes } \\ \text { of skew braces of } \\ \text { type } N, \text { i.e., with } \\ (B, \oplus) \cong N\end{array}\right\} \stackrel{\text { bij }}{\leftrightarrow}\left\{\begin{array}{c}\text { b }\end{array}\right.$
classes of regular subgroup of $\operatorname{Hol}(N)$ under $H_{1} \sim H_{2}$ if $H_{2}=\alpha H_{1} \alpha^{-1}$ for some $\alpha \in \operatorname{Aut}(N)$

Skew Braces and Regular Subgroups of Holomorph Correspondence

Bachiller, Byott, Vendramin:
$\left\{\begin{array}{c}\text { isomorphism classes } \\ \text { of skew braces of } \\ \text { type } N, \text { i.e., with } \\ (B, \oplus) \cong N\end{array}\right\} \stackrel{\text { bij }}{\leadsto}\left\{\begin{array}{c} \\ \end{array}\right.$ classes of regular subgroup of $\operatorname{Hol}(N)$ under $H_{1} \sim H_{2}$ if $H_{2}=\alpha H_{1} \alpha^{-1}$ for some $\alpha \in \operatorname{Aut}(N)$

Another Characterisation of Automorphism Group [cf. NZ18, Jan 2018, Theorem 2.3.8, p 29]
We find
$\operatorname{Aut}_{\mathcal{B} r}(B, \oplus, \odot) \cong\left\{\alpha \in \operatorname{Aut}(B, \oplus) \mid \alpha(\operatorname{Im} m) \alpha^{-1} \subseteq \operatorname{Im} m\right\}$.

Classifying Skew Braces and Hopf-Galois Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N,

Classifying Skew Braces and Hopf-Galois Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed N, classify elements of the set

$$
\mathcal{S}^{\prime}(G, N)=\{H \subseteq \operatorname{Hol}(N) \mid H \text { is regular, } H \cong G\},
$$

and extract a maximal subset whose elements are not conjugate by any element of $\operatorname{Aut}(N)$.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^{3}.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^{3}.
- Catino, Colazzo, and Stefanelli $(2017,2018)$ semi-braces and skew braces with non-trivial annihilator.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^{3}.
- Catino, Colazzo, and Stefanelli $(2017,2018)$ semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order $p^{2} q$.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^{3}.
- Catino, Colazzo, and Stefanelli $(2017,2018)$ semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order $p^{2} q$.
- Childs $(2018,2019)$ correspondence and bi-skew braces.

Skew Braces: Some Results

- Rump (2007) classified cyclic braces.
- Bachiller (2015) classified braces of order p^{3}.
- Bachiller, Cedo, Jespers, Okninski (2017) matched products of braces.
- Guarnieri, Vendramin $(2017,2018)$ conjectures using computer assisted results and problems on skew left braces.
- Nejabati Zenouz (2018) skew braces of order p^{3}.
- Catino, Colazzo, and Stefanelli $(2017,2018)$ semi-braces and skew braces with non-trivial annihilator.
- Dietzel (2018) braces of order $p^{2} q$.
- Childs $(2018,2019)$ correspondence and bi-skew braces.
- Timur Nasybullov (2018), two-sided skew braces.
- Koch and Truman (2019), opposite braces and isomorphism correspondence.

Skew Braces of Order p^{3} for $p>3$

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \widetilde{e}(G, N)$, is given by

Skew Braces of Order p^{3} for $p>3$

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \widetilde{e}(G, N)$, is given by

$\widetilde{e}(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	3	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	9	-	-	$4 p+1$
C_{p}^{3}	-	-	5	$2 p+1$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$2 p+1$	$2 p^{2}-p+3$	-
$C_{p^{2}} \rtimes C_{p}$	-	$4 p+1$	-	-	$4 p^{2}-3 p-1$

Column $C_{p}^{2} \rtimes C_{p}$ and automorphism groups [cf. NZ19, Apr 2019].

Skew Braces of Order p^{3} for $p>3$

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type $N, \widetilde{e}(G, N)$, is given by

$\widetilde{e}(G, N)$	$C_{p^{3}}$	$C_{p^{2}} \times C_{p}$	C_{p}^{3}	$C_{p}^{2} \rtimes C_{p}$	$C_{p^{2}} \rtimes C_{p}$
$C_{p^{3}}$	3	-	-	-	-
$C_{p^{2}} \times C_{p}$	-	9	-	-	$4 p+1$
C_{p}^{3}	-	-	5	$2 p+1$	-
$C_{p}^{2} \rtimes C_{p}$	-	-	$2 p+1$	$2 p^{2}-p+3$	-
$C_{p^{2}} \rtimes C_{p}$	-	$4 p+1$	-	-	$4 p^{2}-3 p-1$

Column $C_{p}^{2} \rtimes C_{p}$ and automorphism groups [cf. NZ19, Apr 2019].

Remark

Note

$$
\widetilde{e}(G, N)=\widetilde{e}(N, G)
$$

Corollary

Denote by

$$
\widetilde{e}(G)=\sum_{N} \widetilde{e}(G, N)=\sum_{N} \widetilde{e}(N, G)
$$

Corollary

Denote by

$$
\widetilde{e}(G)=\sum_{N} \widetilde{e}(G, N)=\sum_{N} \widetilde{e}(N, G)
$$

Then we have

Corollary

Denote by

$$
\widetilde{e}(G)=\sum_{N} \widetilde{e}(G, N)=\sum_{N} \widetilde{e}(N, G)
$$

Then we have

G	$\widetilde{e}(G)$
$C_{p^{3}}$	3
$C_{p^{2}} \times C_{p}$	$4 p+10$
C_{p}^{3}	$2 p+6$
$C_{p}^{2} \rtimes C_{p}$	$2 p^{2}+p+4$
$C_{p^{2}} \rtimes C_{p}$	$4 p^{2}+p$
Total	$6 p^{2}+8 p+23$

Strategy for the Proofs of Theorems $1 \& 2$

Strategy for the Proofs of Theorems $1 \& 2$

- For each group N of order p^{3} determine $\operatorname{Aut}(N)$.

Strategy for the Proofs of Theorems $1 \& 2$

- For each group N of order p^{3} determine $\operatorname{Aut}(N)$.

$$
\begin{gathered}
\operatorname{Aut}\left(C_{p^{3}}\right) \cong C_{p^{2}} \times C_{p-1}, \operatorname{Aut}\left(C_{p}^{3}\right) \cong \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right), \\
\operatorname{Aut}\left(C_{p}^{2} \rtimes C_{p}\right) \cong C_{p}^{2} \rtimes \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right), \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \times C_{p}\right) \longrightarrow \mathrm{UP}_{2}\left(\mathbb{F}_{p}\right) \longrightarrow 1, \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \rtimes C_{p}\right) \longrightarrow \mathrm{UP}_{2}^{1}\left(\mathbb{F}_{p}\right) \longrightarrow 1 .
\end{gathered}
$$

Strategy for the Proofs of Theorems $1 \& 2$

- For each group N of order p^{3} determine $\operatorname{Aut}(N)$.

$$
\begin{gathered}
\operatorname{Aut}\left(C_{p^{3}}\right) \cong C_{p^{2}} \times C_{p-1}, \operatorname{Aut}\left(C_{p}^{3}\right) \cong \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right), \\
\operatorname{Aut}\left(C_{p}^{2} \rtimes C_{p}\right) \cong C_{p}^{2} \rtimes \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right), \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \times C_{p}\right) \longrightarrow \mathrm{UP}_{2}\left(\mathbb{F}_{p}\right) \longrightarrow 1, \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \rtimes C_{p}\right) \longrightarrow \mathrm{UP}_{2}^{1}\left(\mathbb{F}_{p}\right) \longrightarrow 1 .
\end{gathered}
$$

- Classify regular subgroups of $\operatorname{Hol}(N)$ according to the size of their image under the natural projection

$$
\operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) .
$$

Strategy for the Proofs of Theorems $1 \& 2$

- For each group N of order p^{3} determine $\operatorname{Aut}(N)$.

$$
\begin{gathered}
\operatorname{Aut}\left(C_{p^{3}}\right) \cong C_{p^{2}} \times C_{p-1}, \operatorname{Aut}\left(C_{p}^{3}\right) \cong \operatorname{GL}_{3}\left(\mathbb{F}_{p}\right), \\
\operatorname{Aut}\left(C_{p}^{2} \rtimes C_{p}\right) \cong C_{p}^{2} \rtimes \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right), \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \times C_{p}\right) \longrightarrow \mathrm{UP}_{2}\left(\mathbb{F}_{p}\right) \longrightarrow 1, \\
1 \longrightarrow C_{p}^{2} \longrightarrow \operatorname{Aut}\left(C_{p^{2}} \rtimes C_{p}\right) \longrightarrow \mathrm{UP}_{2}^{1}\left(\mathbb{F}_{p}\right) \longrightarrow 1,
\end{gathered}
$$

- Classify regular subgroups of $\operatorname{Hol}(N)$ according to the size of their image under the natural projection

$$
\operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) .
$$

- To find skew braces study conjugation formula by elements of $\operatorname{Aut}(N)$ inside $\operatorname{Hol}(N)$.

Strategy for the Proofs

- Organise the regular subgroups of $H \subset \operatorname{Hol}(N)$ according to the size of their image under the projection

$$
\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \quad \eta \alpha \longmapsto \alpha .
$$

Strategy for the Proofs

- Organise the regular subgroups of $H \subset \operatorname{Hol}(N)$ according to the size of their image under the projection

$$
\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \quad \eta \alpha \longmapsto \alpha .
$$

- Suppose $|\Theta(H)|=m$, where m divides $|N|$, we take a subgroup of order m of $\operatorname{Aut}(N)$ say

$$
H_{2}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \subseteq \operatorname{Aut}(N)
$$

Strategy for the Proofs

- Organise the regular subgroups of $H \subset \operatorname{Hol}(N)$ according to the size of their image under the projection

$$
\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \quad \eta \alpha \longmapsto \alpha .
$$

- Suppose $|\Theta(H)|=m$, where m divides $|N|$, we take a subgroup of order m of $\operatorname{Aut}(N)$ say

$$
H_{2}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \subseteq \operatorname{Aut}(N) .
$$

- A subgroup of order $\frac{|N|}{m}$ of N say

$$
H_{1}=\left\langle\eta_{1}, \ldots, \eta_{r}\right\rangle \subseteq N,
$$

general elements $v_{1}, \ldots, v_{s} \in N$.

Strategy for the Proofs

- Organise the regular subgroups of $H \subset \operatorname{Hol}(N)$ according to the size of their image under the projection

$$
\Theta: \operatorname{Hol}(N) \longrightarrow \operatorname{Aut}(N) \quad \eta \alpha \longmapsto \alpha .
$$

- Suppose $|\Theta(H)|=m$, where m divides $|N|$, we take a subgroup of order m of $\operatorname{Aut}(N)$ say

$$
H_{2}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \subseteq \operatorname{Aut}(N) .
$$

- A subgroup of order $\frac{|N|}{m}$ of N say

$$
H_{1}=\left\langle\eta_{1}, \ldots, \eta_{r}\right\rangle \subseteq N,
$$

general elements $v_{1}, \ldots, v_{s} \in N$.

- Consider subgroups of $\operatorname{Hol}(N)$ of the form

$$
H=\left\langle\eta_{1}, \ldots, \eta_{r}, v_{1} \alpha_{1}, \ldots, v_{s} \alpha_{s}\right\rangle \subseteq \operatorname{Hol}(N) .
$$

Strategy for the Proofs

- Then search for all v_{i} such that the group H is regular.

Strategy for the Proofs

- Then search for all v_{i} such that the group H is regular.
- For H to satisfy $|\Theta(G)|=m$, it is necessary that for every relation $R\left(\alpha_{1}, \ldots, \alpha_{s}\right)=1$ in H_{2} we require

$$
R\left(u_{1}\left(v_{1} \alpha_{1}\right) w_{1}, \ldots, u_{s}\left(v_{s} \alpha_{s}\right) w_{s}\right) \in H_{1}
$$

for all $u_{i}, w_{i} \in H_{1}$.

Strategy for the Proofs

- Then search for all v_{i} such that the group H is regular.
- For H to satisfy $|\Theta(G)|=m$, it is necessary that for every relation $R\left(\alpha_{1}, \ldots, \alpha_{s}\right)=1$ in H_{2} we require

$$
R\left(u_{1}\left(v_{1} \alpha_{1}\right) w_{1}, \ldots, u_{s}\left(v_{s} \alpha_{s}\right) w_{s}\right) \in H_{1}
$$

for all $u_{i}, w_{i} \in H_{1}$.

- For H to act freely on N it is necessary that for every word $W\left(\alpha_{1}, \ldots, \alpha_{s}\right) \neq 1$ in H_{2} we require

$$
W\left(u_{1}\left(v_{1} \alpha_{1}\right) w_{1}, \ldots, u_{s}\left(v_{s} \alpha_{s}\right) w_{s}\right) W\left(\alpha_{1}, \ldots, \alpha_{s}\right)^{-1} \notin H_{1}
$$

for all $u_{i}, w_{i} \in H_{1}$.

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group
$C_{p}^{2} \rtimes C_{p}=\left\langle\rho, \sigma, \tau \mid \rho^{p}=\sigma^{p}=\tau^{p}=1, \sigma \rho=\rho \sigma, \tau \rho=\rho \tau, \tau \sigma=\rho \sigma \tau\right\rangle$

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group
$C_{p}^{2} \rtimes C_{p}=\left\langle\rho, \sigma, \tau \mid \rho^{p}=\sigma^{p}=\tau^{p}=1, \sigma \rho=\rho \sigma, \tau \rho=\rho \tau, \tau \sigma=\rho \sigma \tau\right\rangle$
Let us denote by

$$
\alpha_{1} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \alpha_{2} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \alpha_{3} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Hopf-Galois Structures of Heisenberg Type

Heisenberg Group
$C_{p}^{2} \rtimes C_{p}=\left\langle\rho, \sigma, \tau \mid \rho^{p}=\sigma^{p}=\tau^{p}=1, \sigma \rho=\rho \sigma, \tau \rho=\rho \tau, \tau \sigma=\rho \sigma \tau\right\rangle$
Let us denote by

$$
\alpha_{1} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \alpha_{2} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \alpha_{3} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We have $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \cong C_{p}^{2} \rtimes C_{p}$ is one of the $p+1$ Sylow p-subgroups of

$$
\operatorname{Aut}\left(C_{p}^{2} \rtimes C_{p}\right) \cong C_{p}^{2} \rtimes \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$
\begin{gathered}
\left\langle\rho, \tau, \sigma \alpha_{1}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}^{c}\right\rangle \\
\text { for } a=0, \ldots, p-1, b, c=1, \ldots, p-1, \text { with } c \neq 1, \\
\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{b}\right\rangle,\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle
\end{gathered}
$$

for $a, d=0, \ldots, p-1, b, c=1, \ldots, p-1$ with $b \neq p-1, a+c d+1 \not \equiv 0 \bmod p$.

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$
\begin{gathered}
\left\langle\rho, \tau, \sigma \alpha_{1}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}^{c}\right\rangle \\
\text { for } a=0, \ldots, p-1, b, c=1, \ldots, p-1, \text { with } c \neq 1, \\
\\
\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{b}\right\rangle,\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle
\end{gathered}
$$

for $a, d=0, \ldots, p-1, b, c=1, \ldots, p-1$ with $b \neq p-1, a+c d+1 \not \equiv 0 \bmod p$. Abelian:

$$
\begin{gathered}
\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{3}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}\right\rangle,\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{-(c d+1)} \alpha_{3}^{c}\right\rangle \\
\text { for } a, c, d=0, \ldots, p-1, b=1, \ldots, p-1
\end{gathered}
$$

We shall multiply by $p+1$ appropriately wherever a subgroup involves α_{2}.

Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

$$
\begin{gathered}
\left\langle\rho, \tau, \sigma \alpha_{1}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}^{c}\right\rangle \\
\text { for } a=0, \ldots, p-1, b, c=1, \ldots, p-1, \text { with } c \neq 1, \\
\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{b}\right\rangle,\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{a} \alpha_{3}^{c}\right\rangle
\end{gathered}
$$

for $a, d=0, \ldots, p-1, b, c=1, \ldots, p-1$ with $b \neq p-1, a+c d+1 \not \equiv 0 \bmod p$. Abelian:

$$
\begin{gathered}
\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{3}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{1}^{a} \alpha_{2}^{b} \alpha_{3}\right\rangle,\left\langle\rho, \sigma \tau^{d}, \tau \alpha_{1}^{-(c d+1)} \alpha_{3}^{c}\right\rangle \\
\text { for } a, c, d=0, \ldots, p-1, b=1, \ldots, p-1
\end{gathered}
$$

We shall multiply by $p+1$ appropriately wherever a subgroup involves α_{2}.
Skew Braces:

$$
\begin{aligned}
& \left\langle\rho, \tau, \sigma \alpha_{3}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{2} \alpha_{3}\right\rangle \cong C_{p}^{3},\left\langle\rho, \tau, \sigma \alpha_{1}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{2}\right\rangle, \\
& \left\langle\rho, \tau, \sigma \alpha_{3}^{c}\right\rangle,\left\langle\rho, \tau, \sigma \alpha_{2} \alpha_{3}^{c}\right\rangle \cong M_{1} \text { for } c=2, \ldots, p-1
\end{aligned}
$$

Hopf-Galois Structures of Heisenberg Type $\left(p^{2}\right)$

Nonabelian:

$$
\begin{aligned}
& \left\langle\rho, u \alpha_{1}, v \alpha_{3}\right\rangle \text { for } A=\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { with } v_{2}-u_{3}-\operatorname{det}(A) \not \equiv 0 \bmod p, \\
& \left\langle\rho, \tau^{x_{3}} \alpha_{1}, y \alpha_{2} \alpha_{3}^{a}\right\rangle \text { for } a, y_{3}=0, \ldots, p-1, y_{2}, x_{3}=1, \ldots, p-1 \\
& \text { with } y_{2}-a x_{3}+x_{3} y_{2} \not \equiv 0 \bmod p
\end{aligned}
$$

Hopf-Galois Structures of Heisenberg Type $\left(p^{2}\right)$

Nonabelian:

$$
\begin{aligned}
& \left\langle\rho, u \alpha_{1}, v \alpha_{3}\right\rangle \text { for } A=\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { with } v_{2}-u_{3}-\operatorname{det}(A) \not \equiv 0 \bmod p, \\
& \left\langle\rho, \tau^{x_{3}} \alpha_{1}, y \alpha_{2} \alpha_{3}^{a}\right\rangle \text { for } a, y_{3}=0, \ldots, p-1, y_{2}, x_{3}=1, \ldots, p-1 \\
& \text { with } y_{2}-a x_{3}+x_{3} y_{2} \not \equiv 0 \bmod p,
\end{aligned}
$$

Abelian:

$$
\begin{aligned}
& \left\langle\rho, u \alpha_{1}, v \alpha_{3}\right\rangle \text { for } A=\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { with } v_{2}=u_{3}+\operatorname{det}(A) \\
& \left\langle\rho, \tau^{x_{3}} \alpha_{1}, \sigma^{y_{2}} \tau^{y_{3}} \alpha_{2} \alpha_{3}^{\left(1+x_{3}\right) y_{2} x_{3}^{-1}}\right\rangle \text { for } y_{3}=0, \ldots, p-1, y_{2}, x_{3}=1, \ldots, p-1
\end{aligned}
$$

Hopf-Galois Structures of Heisenberg Type $\left(p^{2}\right)$

Nonabelian:

$$
\begin{aligned}
& \left\langle\rho, u \alpha_{1}, v \alpha_{3}\right\rangle \text { for } A=\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { with } v_{2}-u_{3}-\operatorname{det}(A) \not \equiv 0 \bmod p, \\
& \left\langle\rho, \tau^{x_{3}} \alpha_{1}, y \alpha_{2} \alpha_{3}^{a}\right\rangle \text { for } a, y_{3}=0, \ldots, p-1, y_{2}, x_{3}=1, \ldots, p-1 \\
& \text { with } y_{2}-a x_{3}+x_{3} y_{2} \not \equiv 0 \bmod p,
\end{aligned}
$$

Abelian:

$$
\begin{aligned}
& \left\langle\rho, u \alpha_{1}, v \alpha_{3}\right\rangle \text { for } A=\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { with } v_{2}=u_{3}+\operatorname{det}(A), \\
& \left\langle\rho, \tau^{x_{3}} \alpha_{1}, \sigma^{y_{2}} \tau^{y_{3}} \alpha_{2} \alpha_{3}^{\left(1+x_{3}\right) y_{2} x_{3}^{-1}}\right\rangle \text { for } y_{3}=0, \ldots, p-1, y_{2}, x_{3}=1, \ldots, p-1,
\end{aligned}
$$

Skew braces:

$$
\begin{gathered}
\left\langle\rho, \sigma \alpha_{1}, \sigma^{u_{3}} \tau^{u_{4}} \alpha_{3}\right\rangle,\left\langle\rho, \tau^{-u_{5}} \alpha_{1}, \sigma^{u_{5}} \alpha_{3}\right\rangle,\left\langle\rho, \tau^{x_{3}} \alpha_{1}, \sigma \alpha_{2} \alpha_{3}^{a}\right\rangle \cong M_{1}, \\
\left\langle\rho, \sigma \alpha_{1}, \sigma^{u_{2}} \tau^{u_{2}} \alpha_{3}\right\rangle,\left\langle\rho, \tau^{-2} \alpha_{1}, \sigma^{2} \alpha_{3}\right\rangle,\left\langle\rho, \tau^{x_{3}} \alpha_{1}, \sigma \alpha_{2} \alpha_{3}^{\left(1+x_{3}\right) x_{3}^{-1}}\right\rangle \cong C_{p}^{3} \text { for } \\
a, u_{3}=0, \ldots, p-1, u_{2}, u_{4}, u_{5}, x_{3},=1, \ldots, p-1
\end{gathered}
$$

with $u_{5} \neq 2, u_{3}-u_{4}, a x_{3}-\left(1+x_{3}\right) \not \equiv 0 \bmod p$.

Hopf-Galois Structures of Heisenberg Type $\left(p^{3}\right)$

Abelian:

$$
\left\langle\rho^{u_{1}} \tau^{-2} \alpha_{1}, \rho^{v_{1}} \tau^{1-u_{1}} \alpha_{2}, \rho^{w_{1}} \sigma^{2} \tau^{w_{3}} \alpha_{3}\right\rangle \cong M_{1}
$$

for $u_{1}, v_{1}, w_{1}, w_{3}=0, \ldots, p-1$ with $v_{1}+\frac{1}{2} u_{1}\left(1-u_{1}\right) \not \equiv 0 \bmod p$, Skew braces:

$$
\left\langle\tau^{-2} \alpha_{1}, \rho^{s} \tau \alpha_{2}, \sigma^{2} \tau^{t_{3}} \alpha_{3}\right\rangle \cong M_{1} \text { for } t_{3}=0,1, s=1, \delta,
$$

Skew Braces of $C_{p^{n}}$ type

Example

Let $p>2, n>1$, and $C_{p^{n}}=\left\langle\sigma \mid \sigma^{p^{n}}=1\right\rangle$.

Skew Braces of $C_{p^{n}}$ type

Example

Let $p>2, n>1$, and $C_{p^{n}}=\left\langle\sigma \mid \sigma^{p^{n}}=1\right\rangle$. Then
$\operatorname{Hol}\left(C_{p^{n}}\right)=\langle\sigma\rangle \rtimes\langle\beta, \gamma\rangle$
with $\beta(\sigma)=\sigma^{p+1}$. Then the trivial (skew) brace is $\langle\sigma\rangle$,

Skew Braces of $C_{p^{n}}$ type

Example

Let $p>2, n>1$, and $C_{p^{n}}=\left\langle\sigma \mid \sigma^{p^{n}}=1\right\rangle$. Then

$$
\operatorname{Hol}\left(C_{p^{n}}\right)=\langle\sigma\rangle \rtimes\langle\beta, \gamma\rangle
$$

with $\beta(\sigma)=\sigma^{p+1}$. Then the trivial (skew) brace is $\langle\sigma\rangle$, and the nontrivial (skew) braces are given by

$$
\left\langle\sigma \beta^{p^{m}}\right\rangle \cong C_{p^{n}} \text { for } m=0, \ldots, n-2
$$

Skew Braces of $C_{p^{n}}$ type

Example

Let $p>2, n>1$, and $C_{p^{n}}=\left\langle\sigma \mid \sigma^{p^{n}}=1\right\rangle$. Then

$$
\operatorname{Hol}\left(C_{p^{n}}\right)=\langle\sigma\rangle \rtimes\langle\beta, \gamma\rangle
$$

with $\beta(\sigma)=\sigma^{p+1}$. Then the trivial (skew) brace is $\langle\sigma\rangle$, and the nontrivial (skew) braces are given by

$$
\left\langle\sigma \beta^{p^{m}}\right\rangle \cong C_{p^{n}} \text { for } m=0, \ldots, n-2
$$

We also have

$$
\operatorname{Aut}_{\mathcal{B} r}\left(\left\langle\sigma \beta^{p^{m}}\right\rangle\right)=\left\langle\beta^{p^{n-m-2}}\right\rangle \text { for } m=0, \ldots, n-2
$$

Skew Braces of Semi-direct Product Type

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?

Skew Braces of Semi-direct Product Type

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?
Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]
Let P and Q be groups. Suppose $\alpha, \beta: Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta]=1$.

Skew Braces of Semi-direct Product Type

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta: Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta]=1$.
© We can form an $\left(P \rtimes_{\alpha} Q\right)$-skew brace of type $P \rtimes_{\beta} Q$.

Skew Braces of Semi-direct Product Type

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta: Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta]=1$.
(1) We can form an $\left(P \rtimes_{\alpha} Q\right)$-skew brace of type $P \rtimes_{\beta} Q$.
(2) And an $\left(P \rtimes_{\beta} Q^{\text {op }}\right)$-skew brace of type $P \rtimes_{\alpha} Q$.

Skew Braces of Semi-direct Product Type

Question

How general is the pattern $\widetilde{e}(G, N)=\widetilde{e}(N, G)$?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose $\alpha, \beta: Q \longrightarrow \operatorname{Aut}(P)$ are group homomorphisms such that $\operatorname{Im} \beta$ is an abelian group and $[\operatorname{Im} \alpha, \operatorname{Im} \beta]=1$.
(1) We can form an $\left(P \rtimes_{\alpha} Q\right)$-skew brace of type $P \rtimes_{\beta} Q$.
(2) And an $\left(P \rtimes_{\beta} Q^{\text {op }}\right)$-skew brace of type $P \rtimes_{\alpha} Q$.

What is the relationship between $\widetilde{e}(G, N)$ and $\widetilde{e}(N, G)$ for N which is a general extensions of two groups?

Scopes and Work in Progress

(1) Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^{n}} \rtimes C_{p}$.

Scopes and Work in Progress

(1) Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^{n}} \rtimes C_{p}$.
(2) Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.
(1) Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^{n}} \rtimes C_{p}$.
(2) Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.
(3) Extend results to study skew braces of type $\left(C_{p^{e}} \times C_{p^{f}}\right) \rtimes C_{p^{g}}$ for natural numbers e, f, g.
(1) Work in progress: classify skew braces and Hopf-Galois structures of type $C_{p^{n}} \rtimes C_{p}$.
(2) Study the Galois module theoretic invariants of Hopf-Galois structures corresponding to a skew brace.
(3) Extend results to study skew braces of type $\left(C_{p^{e}} \times C_{p^{f}}\right) \rtimes C_{p^{g}}$ for natural numbers e, f, g.
(- Study skew braces whose type is an extension of two abelian groups. Does the pattern

$$
\widetilde{e}(G, N)=\widetilde{e}(N, G)
$$

still hold?

Thank you for your attention!

Selected References I

[NZ18] Kayvan Nejabati Zenouz. On Hopf-Galois Structures and Skew Braces of Order p^{3}. The University of Exeter, PhD Thesis, Funded by EPSRC DTG, January 2018. https://ore.exeter.ac.uk/repository/handle/10871/32248.
[NZ19] Kayvan Nejabati Zenouz. Skew Braces and Hopf-Galois Structures of Heisenberg Type. Journal of Algebra, 524:187-225, April 2019. https://doi.org/10.1016/j.jalgebra.2019.01.012.

[^0]: ${ }^{1}$ Email: knejabati-zenouz@brookes.ac.uk website: www.nejabatiz.com

