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The Yang-Baxter Equation

For a vector space V , an element

R ∈ GL(V ⊗ V )

is said to satisfy the Yang-Baxter equation (YBE) if

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)

holds.

This equation can be depicted by

=
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The Yang-Baxter Equation

The Yang-Baxter equation appeared in work of Yang and
Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in
quantum group theory with applications in

integrable systems
knot theory

tensor categories
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Set-Theoretic Yang-Baxter Equation

In 1992 Drinfeld suggested studying the simplest class of
solutions arising from the set-theoretic version of this
equation.

Definition

Let X be a nonempty set and

r : X ×X −→ X ×X
(x, y) 7−→ (fx(y), gy(x))

a bijection. Then (X, r) is a set-theoretic solution of YBE if

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r)

holds. The solution (X, r) is called non-degenerate if
fx, gx ∈ Perm(X) for all x ∈ X and involutive if r2 = id.
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Set-Theoretic Yang-Baxter Equation

Examples

Let X be a nonempty set.

1 The map r(x, y) = (y, x).

2 Let f, g : X −→ X be bijections with fg = gf . Then

r(x, y) = (f(y), g(x))

gives a non-degenerate solution, which is involutive if and
only if f = g−1.

3 For any group structure on X the map

r(x, y) = (y, yxy−1).

4 If (R,+, ·) is a radical ring with circle operation
a ◦ b = a+ ab+ b then r(x, y) = (xy+ y, (xy+ y)◦−1 ◦ x ◦ y).
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Skew Braces

Definition

A (left) skew brace is a triple (B,⊕,�) which consists of a set
B together with two operations ⊕ and � so that (B,⊕) and
(B,�) are groups

such that for all a, b, c ∈ B:

a� (b⊕ c) = (a� b)	 a⊕ (a� c),

where 	a is the inverse of a with respect to the operation ⊕.

Remark

A skew brace is called two-sided if

(b⊕ c)� a = (b� a)	 a⊕ (c� a).

Interesting for ring theorists: 0 = 1.
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Skew Braces

Example

Any group (B,⊕) with

a� b = a⊕ b (similarly with a� b = b⊕ a)

is a skew brace. This is the trivial skew brace structure.

Notation

We call a skew brace (B,⊕,�) such that (B,⊕) ∼= N and
(B,�) ∼= G a G-skew brace of type N .

A skew brace (B,⊕,�) is called a brace if (B,⊕) is
abelian, i.e., a skew brace of abelian type.

Braces were introduced by Rump in 2007 as a generalisation
of radical rings. They provide non-degenerate, involutive
set-theoretic solutions of the YBE.
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Skew Braces: History

Skew braces generalise
braces and were introduced
by Guarnieri and
Vendramin in 2017.

They provide
non-degenerate
set-theoretic solutions
of the Yang-Baxter
equation.

Their connection to ring
theory and Hopf-Galois
structures was studied by
Bachiller, Byott,
Smoktunowicz, and
Vendramin.
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Skew Braces and the YBE

Theorem (L. Guarnieri and L. Vendramin)

Let (B,⊕,�) be a skew brace. Then the map

rB : B ×B −→ B ×B
(a, b) 7−→

(
	a⊕ (a� b), (	a⊕ (a� b))−1 � a� b

)
is a non-degenerate set-theoretic solution of the YBE, which is
involutive if and only if (B,⊕,�) is a brace.
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Relation to Rings

Given a skew brace (B,⊕,�) define

a⊗ b = 	a⊕ (a� b)	 b.

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study
(B,⊕,⊗) using ring theoretic methods.

However, if B is a two-sided brace, then (B,⊕,⊗) is a
radical ring, Rump (2007).

Conversely, if (B,⊕,⊗) is a radical ring, then (B,⊕, ◦),
where

a ◦ b = a⊕ a⊗ b⊕ b

is a two-sided brace, Rump (2007).
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Hopf-Galois Theory

Two aims in developing the theory:

Galois theory for inseparable extensions of fields.

Studying rings of integers of extensions of number fields.
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Hopf-Galois Structures: Motivations

For simplicity we assume L/K is a Galois extension of fields
with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

Assume L/K is an extension of global or local fields (e.g.,
extensions of Q or Qp).

Denote by OL and OK the rings of integers of L and K,
respectively.

Then OL is also a module over OK [G].

Can OL be free over OK [G]?

... No in general.
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Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with
an action on L.

Definition

A Hopf-Galois structure on L/K consists of a finite
dimensional cocommutative K-Hopf algebra H together with an
action on L such that the R-module homomorphism

j :L⊗K H −→ EndK (L)

s⊗ h 7−→ (t 7−→ sh (t)) for s, t ∈ L, h ∈ H

is an isomorphism.

The group algebra K[G] endows L/K with the classical
Hopf-Galois structure.
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Hopf-Galois Structures: Application

Assume L/K is a Galois extension of (local/global) fields
with Galois group G.

Suppose H endows L/K with a Hopf-Galois structure.

Define the associated order of OL in H by

AH = {α ∈ H | α (OL) ⊆ OL}.

Can OL be free over AH?

How to find Hopf-Galois structures?
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Hopf-Galois Structures:

A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular
subgroups of Perm(G) which are normalised by the image of G,
as left translations, inside Perm(G).

Every K-Hopf algebra which endows L/K with a Hopf-Galois
structure is of the form L[N ]G for some regular subgroup
N ⊆ Perm(G) normalised by the left translations.
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Hopf-Galois Structures: Byott’s Translation

Problem

The group Perm(G) can be large.

Instead of working with groups of permutations, work with
holomorphs.

Theorem (Byott 1996)

Let G and N be finite groups. There exists a bijection between
the sets

N = {α : N ↪→ Perm(G) | α(N) is regular and normalised by G}

G = {β : G ↪→ Hol(N) | β(G) is regular},

where Hol(N) = N o Aut(N).
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the sets

N = {α : N ↪→ Perm(G) | α(N) is regular and normalised by G}

G = {β : G ↪→ Hol(N) | β(G) is regular},

where Hol(N) = N o Aut(N).
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Hopf-Galois Structures: Byott’s Translation

Enumerating Hopf-Galois Structures (Byott)

Using Byott’s translation one can show that

]HGS on L/Kof type N =

|Aut (G)|
|Aut (N)|

|{H ⊆ Hol(N) regular with H ∼= G}| .
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Hopf-Galois Structures: Some Results

� Byott (1996) showed if |G| = n, then L/K a unique
Hopf-Galois structure iff gcd (n, φ (n)) = 1.

� Kohl (1998, 2019) classified Hopf-Galois structures for
G = Cpn , Dn for a prime p > 2.

� Byott (1996, 2004) studied the problem for |G| = p2, pq,
also when G is a nonabelian simple group.

� Carnahan and Childs (1999, 2005) studied Hopf-Galois
structures for G = Cn

p and G = Sn.

� Alabadi and Byott (2017) studied the problem for |G| is
squarefree.

� Nejabati Zenouz (2018) Hopf-Galois structures for |G| = p3

where p is a prime number.

� Crespo and Salguero extensions of degree Cpn o CD,
Samways cyclic extensions, and Tsang Sn-extensions.
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Hopf-Galois Structures of Order p3 for p > 3

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L/K of type N ,
e(G,N), is given by

e(G,N) C
p3

C
p2

× Cp C3
p C2

p o Cp C
p2

o Cp

C
p3

p2 - - - -

C
p2

× Cp - (2p − 1)p2 - - (2p − 1)(p − 1)p2

C3
p - - (p4 + p3 − 1)p2 (p3 − 1)(p2 + p − 1)p2 -

C2
p o Cp - - (p2 + p − 1)p2 (2p3 − 3p + 1)p2 -

C
p2

o Cp - (2p − 1)p2 - - (2p − 1)(p − 1)p2

Column C2
p o Cp J. Algebra [cf. NZ19, Apr 2019]. Cases p = 2, 3

are also treated in PhD thesis.

Remark

Note p2 | e(G,N) and

|Aut(N)| e(G,N) = |Aut(G)| e(N,G).
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Corollaries

Denote by

e(G) =
∑
N

e(G,N) and e(N) =
∑
G

e(G,N).

Then we have

G e(G) e(G)

Cp3 p2 p2

Cp2 × Cp (2p− 1)p3 2(2p− 1)p2

C3
p (p4 + 2p3 − p− 1)p3 (p4 + p3 + p2 + p− 2)p2

C2
p o Cp (2p2 + p− 2)p3 (p5 + p4 + p3 − p2 − 4p+ 2)p2

Cp2 o Cp (2p− 1)p3 2(2p− 1)(p− 1)p2

Total (p5 + 2p4 + 2p3 + 4p2 − 5p+ 1)p2
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Hopf-Galois Structures and Skew Braces

Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures.


isomorphism classes
of G-skew braces,

i.e., with (B,�) ∼= G

 bij
!


classes of certain regular

subgroups of Perm(G) under
conjugation by elements of

Aut(G)
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From Skew Braces to Hopf-Galois Structures

Suppose (B,⊕,�) is a skew brace.

Then (B,⊕) acts on (B,�) and we find

d : (B,⊕) −→ Perm (B,�)

a 7−→ (da : b 7−→ a⊕ b)

which is a regular embedding.

The skew brace property implies that Im d is normalised by
the left translations.

Fix L/K with Galois group (B,�).

Thus L[Im d](B,�) endows L/K with a Hopf-Galois
structure of type (B,⊕).

Isomorphic skew braces correspond to conjugate regular
subgroups.
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From Hopf-Galois Structures to Skew Braces

Suppose H endows L/K with a Hopf-Galois structure.

Then H = L[N ](B,�) for some N ⊆ Perm (B,�) which is a
regular subgroup normalised the left translations.

N is a regular subgroup, implies that we have a bijection

φ :N −→ (B,�)

n 7−→ n · 1.

Define

a⊕ b = φ
(
φ−1 (a)φ−1 (b)

)
for a, b ∈ (B,�) .

N is normalised by the left translations implies that
(B,⊕,�) is a skew brace of type N corresponding to H.
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Skew Braces and Hopf-Galois Structures

Correspondence


isomorphism classes
of G-skew braces,

i.e., with (B,�) ∼= G

 bij
!


classes of Hopf-Galois structures
on L/K under L[N1]

G ∼ L[N2]
G

if N2 = αN1α
−1 for some

α ∈ Aut(G)



i.e., if (B,⊕,�) is a skew brace of type, then we get the

following Hopf-Galois structures on L/K{
L[α (Im d)α−1](B,�) | α ∈ Aut (B,�)

}
.
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Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary
2.3]

In particular, if f : (B,⊕,�) −→ (B,⊕,�) is an automorphism,

then we have

(B,⊕) Perm (B,�)

(B,⊕) Perm (B,�) ;

d

fo Cfo

d

using this observation we find

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,�) | α (Im d)α−1 ⊆ Im d

}
.
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Classification of Hopf-Galois Structures and Skew

Braces: Theoretical

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify
elements of the set

S(G,N) = {H ⊆ Perm (G) | H is regular, NLT, H ∼= N},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (G).



29/47

Classification of Hopf-Galois Structures and Skew

Braces: Theoretical

Hopf-Galois Structures Parametrised by Skew Braces
[cf. NZ19, Corollary 2.4]

Denote by BN
G the isomorphism class of a G-skew brace of type

N given by (B,⊕,�).

Then the number of Hopf-Galois
structures on L/K of type N is given by

e(G,N) =
∑
BN

G

|Aut (G)|
|AutBr (BN

G )|
.
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Classification of Hopf-Galois Structures and Skew

Braces: Practical

Again we would like to work with holomorphs instead of the
permutation groups.

For a skew brace (B,⊕,�) consider the action of (B,�) on
(B,⊕) by (a, b) 7−→ a� b. This yeilds to a map

m : (B,�) −→ Hol (B,⊕)

a 7−→ (ma : b 7−→ a� b)

which is a regular embedding.
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Skew Braces and Regular Subgroups of

Holomorph Correspondence

Bachiller, Byott, Vendramin:


isomorphism classes

of skew braces of
type N , i.e., with

(B,⊕) ∼= N

 bij
!


classes of regular subgroup of

Hol(N) under H1 ∼ H2 if
H2 = αH1α

−1 for some
α ∈ Aut(N)



Another Characterisation of Automorphism Group [cf.
NZ18, Jan 2018, Theorem 2.3.8, p 29]

We find

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,⊕) | α (Imm)α−1 ⊆ Imm

}
.
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isomorphism classes

of skew braces of
type N , i.e., with

(B,⊕) ∼= N

 bij
!


classes of regular subgroup of

Hol(N) under H1 ∼ H2 if
H2 = αH1α

−1 for some
α ∈ Aut(N)


Another Characterisation of Automorphism Group [cf.
NZ18, Jan 2018, Theorem 2.3.8, p 29]

We find

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,⊕) | α (Imm)α−1 ⊆ Imm

}
.
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Classifying Skew Braces and Hopf-Galois

Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed
N ,

classify elements of the set

S ′(G,N) = {H ⊆ Hol (N) | H is regular, H ∼= G},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (N).
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Skew Braces: Some Results

� Rump (2007) classified cyclic braces.

� Bachiller (2015) classified braces of order p3.
� Bachiller, Cedo, Jespers, Okninski (2017) matched

products of braces.
� Guarnieri, Vendramin (2017, 2018) conjectures using

computer assisted results and problems on skew left
braces.

� Nejabati Zenouz (2018) skew braces of order p3.
� Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces

and skew braces with non-trivial annihilator .
� Dietzel (2018) braces of order p2q.
� Childs (2018, 2019) correspondence and bi-skew

braces.
� Timur Nasybullov (2018), two-sided skew braces.
� Koch and Truman (2019), opposite braces and

isomorphism correspondence.
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Skew Braces of Order p3 for p > 3

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type N , ẽ(G,N), is given by

ẽ(G,N) Cp3 Cp2 × Cp C3
p C2

p o Cp Cp2 o Cp
Cp3 3 - - - -

Cp2 × Cp - 9 - - 4p+ 1

C3
p - - 5 2p+ 1 -

C2
p o Cp - - 2p+ 1 2p2 − p+ 3 -

Cp2 o Cp - 4p+ 1 - - 4p2 − 3p− 1

Column C2
p o Cp and automorphism groups [cf. NZ19, Apr

2019].

Remark

Note
ẽ(G,N) = ẽ(N,G).
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Corollary

Denote by

ẽ(G) =
∑
N

ẽ(G,N) =
∑
N

ẽ(N,G).

Then we have

G ẽ(G)

Cp3 3
Cp2 × Cp 4p+ 10
C3
p 2p+ 6

C2
p o Cp 2p2 + p+ 4

Cp2 o Cp 4p2 + p

Total 6p2 + 8p+ 23
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G ẽ(G)

Cp3 3
Cp2 × Cp 4p+ 10
C3
p 2p+ 6

C2
p o Cp 2p2 + p+ 4

Cp2 o Cp 4p2 + p

Total 6p2 + 8p+ 23



35/47

Corollary

Denote by
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ẽ(N,G).

Then we have

G ẽ(G)
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Strategy for the Proofs of Theorems 1 & 2

For each group N of order p3 determine Aut(N).

Aut(Cp3) ∼= Cp2 × Cp−1, Aut(C3
p) ∼= GL3(Fp),

Aut(C2
p o Cp) ∼= C2

p o GL2(Fp),

1 −→ C2
p −→ Aut(Cp2 × Cp) −→ UP2(Fp) −→ 1,

1 −→ C2
p −→ Aut(Cp2 o Cp) −→ UP1

2(Fp) −→ 1.

Classify regular subgroups of Hol(N) according to the size
of their image under the natural projection

Hol(N) −→ Aut(N).

To find skew braces study conjugation formula by
elements of Aut(N) inside Hol(N).
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Strategy for the Proofs

Organise the regular subgroups of H ⊂ Hol(N) according
to the size of their image under the projection

Θ : Hol(N) −→ Aut(N) ηα 7−→ α.

Suppose |Θ(H)| = m, where m divides |N |, we take a
subgroup of order m of Aut(N) say

H2 = 〈α1, ..., αs〉 ⊆ Aut(N).

A subgroup of order |N |
m

of N say

H1 = 〈η1, ..., ηr〉 ⊆ N,

general elements v1, ..., vs ∈ N .
Consider subgroups of Hol(N) of the form

H = 〈η1, ..., ηr, v1α1, ..., vsαs〉 ⊆ Hol(N).
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Strategy for the Proofs

Then search for all vi such that the group H is regular.

For H to satisfy |Θ(G)| = m, it is necessary that for every
relation R(α1, ..., αs) = 1 in H2 we require

R(u1(v1α1)w1, ..., us(vsαs)ws) ∈ H1

for all ui, wi ∈ H1.

For H to act freely on N it is necessary that for every word
W (α1, ..., αs) 6= 1 in H2 we require

W (u1(v1α1)w1, ..., us(vsαs)ws)W (α1, ..., αs)
−1 /∈ H1

for all ui, wi ∈ H1.
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Hopf-Galois Structures of Heisenberg Type

Heisenberg Group

C2
poCp = 〈ρ, σ, τ | ρp = σp = τ p = 1, σρ = ρσ, τρ = ρτ, τσ = ρστ〉 .

Let us denote by

α1
def
=

1 1 0
0 1 0
0 0 1

 , α2
def
=

1 0 0
0 1 0
0 1 1

 , α3
def
=

1 0 1
0 1 0
0 0 1

 .

We have 〈α1, α2, α3〉 ∼= C2
p o Cp is one of the p+ 1 Sylow

p-subgroups of

Aut(C2
p o Cp) ∼= C2

p o GL2(Fp).
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Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:〈
ρ, τ, σαb1

〉
,
〈
ρ, τ, σαa1α

b
2

〉
, 〈ρ, τ, σαa1αc3〉 ,

〈
ρ, τ, σαa1α

b
2α

c
3

〉
for a = 0, ..., p− 1, b, c = 1, ..., p− 1,with c 6= 1,〈

ρ, στd, ταb1

〉
,
〈
ρ, στd, ταa1α

c
3

〉
for a, d = 0, ..., p−1, b, c = 1, ..., p−1 with b 6= p−1, a+cd+1 6≡ 0 mod p.

Abelian:

〈ρ, τ, σαa1α3〉 ,
〈
ρ, τ, σαa1α

b
2α3

〉
,
〈
ρ, στd, τα

−(cd+1)
1 αc3

〉
for a, c, d = 0, ..., p− 1, b = 1, ..., p− 1,

We shall multiply by p+ 1 appropriately wherever a subgroup
involves α2.
Skew Braces:

〈ρ, τ, σα3〉 , 〈ρ, τ, σα2α3〉 ∼= C3
p , 〈ρ, τ, σα1〉 , 〈ρ, τ, σα2〉 ,

〈ρ, τ, σαc3〉 , 〈ρ, τ, σα2α
c
3〉 ∼=M1 for c = 2, ..., p− 1.
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c
3〉 ∼=M1 for c = 2, ..., p− 1.
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Hopf-Galois Structures of Heisenberg Type (p2)

Nonabelian:

〈ρ, uα1, vα3〉 for A =
( u2 v2
u3 v3

)
∈ GL2(Fp) with v2 − u3 − det(A) 6≡ 0 mod p,

〈ρ, τx3α1, yα2α
a
3〉 for a, y3 = 0, ..., p− 1, y2, x3 = 1, ..., p− 1

with y2 − ax3 + x3y2 6≡ 0 mod p,

Abelian:

〈ρ, uα1, vα3〉 for A =
( u2 v2
u3 v3

)
∈ GL2(Fp) with v2 = u3 + det(A),〈

ρ, τx3α1, σ
y2τy3α2α

(1+x3)y2x
−1
3

3

〉
for y3 = 0, ..., p− 1, y2, x3 = 1, ..., p− 1,

Skew braces:

〈ρ, σα1, σ
u3τu4α3〉 ,

〈
ρ, τ−u5α1, σ

u5α3

〉
, 〈ρ, τx3α1, σα2α

a
3〉 ∼=M1,

〈ρ, σα1, σ
u2τu2α3〉 ,

〈
ρ, τ−2α1, σ

2α3

〉
,

〈
ρ, τx3α1, σα2α

(1+x3)x
−1
3

3

〉
∼= C3

p for

a, u3 = 0, ..., p− 1, u2, u4, u5, x3,= 1, ..., p− 1

with u5 6= 2, u3 − u4, ax3 − (1 + x3) 6≡ 0 mod p.
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Hopf-Galois Structures of Heisenberg Type (p3)

Abelian: 〈
ρu1τ−2α1, ρ

v1τ 1−u1α2, ρ
w1σ2τw3α3

〉 ∼= M1

for u1, v1, w1, w3 = 0, ..., p− 1 with v1 +
1

2
u1(1− u1) 6≡ 0 mod p,

Skew braces:〈
τ−2α1, ρ

sτα2, σ
2τ t3α3

〉 ∼= M1 for t3 = 0, 1, s = 1, δ,
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Skew Braces of Cpn type

Example

Let p > 2, n > 1, and Cpn =
〈
σ | σpn = 1

〉
.

Then

Hol (Cpn) = 〈σ〉o 〈β, γ〉

with β (σ) = σp+1. Then the trivial (skew) brace is 〈σ〉, and the
nontrivial (skew) braces are given by〈

σβp
m〉 ∼= Cpn for m = 0, ..., n− 2.

We also have

AutBr
(〈
σβp

m〉)
=
〈
βp

n−m−2
〉

for m = 0, ..., n− 2.
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Skew Braces of Semi-direct Product Type

Question

How general is the pattern ẽ(G,N) = ẽ(N,G)?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and Q be groups. Suppose α, β : Q −→ Aut(P ) are group
homomorphisms such that Im β is an abelian group and
[Imα, Im β] = 1.

1 We can form an (P oα Q)-skew brace of type P oβ Q.

2 And an (P oβ Q
op)-skew brace of type P oα Q.

What is the relationship between ẽ(G,N) and ẽ(N,G) for N
which is a general extensions of two groups?
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which is a general extensions of two groups?



45/47

Scopes and Work in Progress

1 Work in progress: classify skew braces and Hopf-Galois
structures of type Cpn o Cp.

2 Study the Galois module theoretic invariants of
Hopf-Galois structures corresponding to a skew brace.

3 Extend results to study skew braces of type(
Cpe × Cpf

)
o Cpg for natural numbers e, f, g.

4 Study skew braces whose type is an extension of two
abelian groups. Does the pattern

ẽ(G,N) = ẽ(N,G)

still hold?
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Thank you for your attention!
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