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The Yang-Baxter equation appeared in work of Yang and
Baxter in statistical mechanics and mathematical physics.

Nowadays the Yang-Baxter equation has a central role in
quantum group theory with applications in

integrable systems |

knot theory )

tensor categories J
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In 1992 Drinfeld suggested studying the simplest class of
solutions arising from the set-theoretic version of this
equation.

Definition

Let X be a nonempty set and
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r: X xX —XxX
(fﬁ,y) — (fx(y)7gy($))

a bijection. Then (X, r) is a set-theoretic solution of YBE if
(r xid)(id x r)(r x id) = (id x r)(r x id)(id x r)

holds. The solution (X, r) is called non-degenerate if
fz, g € Perm(X) for all z € X and involutive if r* = id.
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Let X be a nonempty set.
Q@ The map r(z,y) = (y,z).
Q Let f,g: X — X be bijections with fg = ¢gf. Then

r(z,y) = (f(y), 9(x))

gives a non-degenerate solution, which is involutive if and
only if f =g~ !.
© For any group structure on X the map

r(z,y) = (y,yzy ).

Q If (R, +,") is a radical ring with circle operation
aob=a+ab+0bthen r(z,y) = (zy+y, (zy+y)° toxoy).
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Skew Braces

Definition

A (left) skew brace is a triple (B, ®,®) which consists of a set
B together with two operations @ and ® so that (B, ®) and
(B, ®) are groups such that for all a,b,c € B:

a®b®c)=(a@b)ead (a®c),

where Sa is the inverse of a with respect to the operation .

Remark

| A

A skew brace is called two-sided if

bdec)oa=0b0a)oad® (c®a).

Interesting for ring theorists: 0 = 1.
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e We call a skew brace (B, ®,®) such that (B,®) = N and
(B,®) = G a G-skew brace of type N.

o A skew brace (B,®,®) is called a brace if (B, ®) is
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Braces were introduced by Rump in 2007 as a generalisation
of radical rings. They provide non-degenerate, involutive
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Skew Braces: History

Skew braces generalise
braces and were introduced

by Guarnieri and
Vendramin in 2017.

They provide
non-degenerate
set-theoretic solutions
of the Yang-Baxter
equation.

Their connection to ring
theory and Hopf-Galois
structures was studied by
Bachiller, Byott,

™ Smoktunowicz, and
Vendramin.




Skew Braces and the YBE

Theorem (L. Guarnieri and L. Vendramin)

Let (B,®,®) be a skew brace. Then the map

rg: BxB— BXxB
(a,0) — (©a @ (a®b),(Ca®(a®b) @adb)

is a non-degenerate set-theoretic solution of the YBE, which is
involutive if and only if (B, ®,®) is a brace.
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Relation to Rings

e Given a skew brace (B, ®,®) define
a®b=60a®(a®b)Ob.

Cedo, Konovalov, Vendramin, Smoktunowicz (2018) study
(B, ®, ®) using ring theoretic methods.
e However, if B is a two-sided brace, then (B, ®,®) is a
radical ring, Rump (2007).
e Conversely, if (B, ®,®) is a radical ring, then (B, ®,0),
where
aocb=a®aRbDb

is a two-sided brace, Rump (2007).
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Two aims in developing the theory:

Galois theory for inseparable extensions of fields. ]

Studying rings of integers of extensions of number fields. |
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Hopf-Galois Structures: Motivations

For simplicity we assume L/K is a Galois extension of fields
with Galois group G.

Normal Basis Theorem

L is a free K[G]-module of rank one.

e Assume L/K is an extension of global or local fields (e.g.,
extensions of Q or Q).

@ Denote by O, and Ok the rings of integers of L and K,
respectively.

@ Then Oy is also a module over Ok|[G].

e Can Oy, be free over Ok[G]?

... No in general.
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Hopf-Galois Structures

Hopf-Galois structures are K-Hopf algebras together with
an action on L.

Definition

A Hopf-Galois structure on L/K consists of a finite
dimensional cocommutative K-Hopf algebra H together with an
action on L such that the R-module homomorphism

S®@hv+— (t—> sh(t)) fors,te L, he H

is an isomorphism.

The group algebra K[G| endows L/K with the classical
Hopf-Galois structure.
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Hopf-Galois Structures: Application

e Assume L/K is a Galois extension of (local/global) fields
with Galois group G.

@ Suppose H endows L/K with a Hopf-Galois structure.
o Define the associated order of Oy, in H by

QIH:{OJGH|OJ(OL)QOL}.

o Can Oy, be free over Ay?

e How to find Hopf-Galois structures?
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Hopf-Galois Structures:
A Theorem of Greither and Pareigis

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/ K correspond bijectively to reqular
subgroups of Perm(G) which are normalised by the image of G,
as left translations, inside Perm(QG).

Every K-Hopf algebra which endows L/K with a Hopf-Galois
structure is of the form L[N]“ for some regular subgroup
N C Perm(G) normalised by the left translations.
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Hopf-Galois Structures: Byott’s Translation

Problem

The group Perm(G) can be large.

Instead of working with groups of permutations, work with
holomorphs.

| A

Theorem (Byott 1996)

Let G and N be finite groups. There exists a bijection between
the sets

N ={a: N < Perm(G) | a(N) is reqular and normalised by G}

G ={f: G <= Hol(N) | 5(G) is regular},
where Hol(N) = N x Aut(N).




Hopf-Galois Structures: Byott’s Translation

Enumerating Hopf-Galois Structures (Byott)

Using Byott’s translation one can show that

#tHGS on L/Kof type N =
|Aut (G)|

- : ~ .
|Aut (N)| [{H C Hol(N) regular with H = G}|
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Hopf-Galois Structures: Some Results

¢ Byott (1996) showed if |G| = n, then L/K a unique
Hopf-Galois structure iff ged (n, ¢ (n)) = 1.

¢ Kohl (1998, 2019) classified Hopf-Galois structures for
G = Cpn, D, for a prime p > 2.

¢ Byott (1996, 2004) studied the problem for |G| = p?, pq,
also when G is a nonabelian simple group.

¢ Carnahan and Childs (1999, 2005) studied Hopf-Galois
structures for G = €} and G = S,,.

¢ Alabadi and Byott (2017) studied the problem for |G| is
squarefree.

¢ Nejabati Zenouz (2018) Hopf-Galois structures for |G| = p?
where p is a prime number.

¢ Crespo and Salguero extensions of degree Cpn x Cp,
Samways cyclic extensions, and Tsang S,,-extensions.
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Hopf-Galois Structures of Order p? for p > 3

Theorem 1 [cf. NZ18, Jan 2018]

The number of Hopf-Galois structures on L/K of type N,
e(G,N), is given by

e(G, N) C.3 C2 X Cp cy Ch % Cp C,2 % Cp

Cs R - -

C2xCp | - (2p — 1)p* | - - (2p — 1)(p — 1)p?
c, - - (e*+p°—1p> | -1 +p—Dp” | -

@251 Oy = = (»°+p—1)p° (2p° —3p + 1)p” =

Cp2xCp | - (2p —1)p* | - - (2p — 1)(p — 1)p”

Column C? x C,, J. Algebra [cf. NZ19, Apr 2019]. Cases p = 2,3
are also treated in PhD thesis.

Note p? | e(G, N) and

|Aut(N)| (G, N) = [Aut(G)| e(N, G).
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Denote by
:ZGGN ) and &(N :Ze
N G

Then we have

G | e(@) K<)

Cps P’ p*

Cpe x Cp || (2p—1)p? 2(2p — 1)

cy (' +2p°—p—1)p* | (p* +p +p +p - 2)p?

CQNC (2p* +p — 2)p® (p° + p* +p> — p? — dp + 2)p?
Cp2 X C (2p —1)p? 2(2p—1)(p - 1)p°

Total (p° + 2p* + 2p® + 4p? — 5p + 1)p?
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Question

How are Hopf-Galois structures related to skew braces?

Skew braces parametrise Hopf-Galois structures. J

classes of certain regular
D, subgroups of Perm(G) under
conjugation by elements of

Aut(G)

isomorphism classes
of G-skew braces,
i.e., with (B,®) =G
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From Skew Braces to Hopf-Galois Structures

Suppose (B, ®,®) is a skew brace.
@ Then (B, ®) acts on (B,®) and we find

d:(B,®) — Perm (B, 0©)
ar— (dy: b— a®b)

which is a regular embedding.

@ The skew brace property implies that Im d is normalised by
the left translations.

e Fix L/K with Galois group (B, ®).

o Thus L[{Imd]®® endows L/K with a Hopf-Galois
structure of type (B, ®).

o Isomorphic skew braces correspond to conjugate regular
subgroups.
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From Hopf-Galois Structures to Skew Braces

@ Suppose H endows L/K with a Hopf-Galois structure.

o Then H = L[N]®©) for some N C Perm (B, ®) which is a
regular subgroup normalised the left translations.

@ N is a regular subgroup, implies that we have a bijection

¢:N — (B,®)
n——mn-1.

@ Define

a®b=¢ (¢ (a)¢" (b)) fora,be (B,0O).

@ N is normalised by the left translations implies that
(B, ®,®) is a skew brace of type N corresponding to H.
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Skew Braces and Hopf-Galois Structures
Correspondence

classes of Hopf-Galois structures

somorbisin casses | s J on L/K wnder LINJS ~ L[N
’ if Ny = aN;a~! for some

ie., if (B,®,®) is a skew brace of type, then we get the

following Hopf-Galois structures on L/K

{L[a (Imd) a B9 | o € Aut (B, ®)}.
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Upshot: Automorphism Groups of Skew Braces

Automorphism Groups [cf. NZ19, Apr 2019, Corollary

2.3]

In particular, if f: (B, ®,®) — (B, ®,®) is an automorphism,
then we have

(B,®) 9 4 Perm (B,®)

L e

(B,®) —%— Perm (B, ®);

using this observation we find

Autg, (B,®,0) = {a € Aut (B,0) | a(Imd) o C Imd}.

v




Classification of Hopf-Galois Structures and Skew
Braces: Theoretical

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N classify
elements of the set

S(G,N) ={H C Perm (G) | H is regular, NLT, H = N},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (G).

v
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Classification of Hopf-Galois Structures and Skew
Braces: Theoretical

Hopf-Galois Structures Parametrised by Skew Braces
[cf. NZ19, Corollary 2.4]
Denote by BY the isomorphism class of a G-skew brace of type

N given by (B, ®,®). Then the number of Hopf-Galois
structures on L/K of type N is given by

CJAw(G)]
N)
G Z |Aut3,~ BN
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Classification of Hopf-Galois Structures and Skew
Braces: Practical

Again we would like to work with holomorphs instead of the
permutation groups.

For a skew brace (B, ®,®) consider the action of (B, ®) on
(B,®) by (a,b) — a ® b. This yeilds to a map

m: (B,®) — Hol (B, ®)
ar— (mg:b—a®b)

which is a regular embedding.




Skew Braces and Regular Subgroups of
Holomorph Correspondence

Bachiller, Byott, Vendramin:

isomorphism classes classes of regular subgroup of
of skew braces of D Hol(N) under Hy ~ H, if
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Skew Braces and Regular Subgroups of
Holomorph Correspondence

Bachiller, Byott, Vendramin:

isomorphism classes classes of regular subgroup of
of skew braces of bij Hol(N) under Hy ~ H, if
type N, i.e., with o Hy = aHya™! for some
(B,®) =N a € Aut(N)

Another Characterisation of Automorphism Group [cf.

NZ18, Jan 2018, Theorem 2.3.8, p 29]
We find

Autg,. (B, ®,0) = {a € Aut (B,®) | a(Imm)a™t C Imm}.
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Y




Classifying Skew Braces and Hopf-Galois
Structures

To find the non-isomorphic G-skew braces of type N for a fixed
N, classify elements of the set

S'(G,N)={H C Hol (N) | H is regular, H = G},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (V).

v
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Skew Braces: Some Results

¢ Rump (2007) classified cyclic braces.

¢ Bachiller (2015) classified braces of order p>.

¢ Bachiller, Cedo, Jespers, Okninski (2017) matched
products of braces.

¢ Guarnieri, Vendramin (2017, 2018) conjectures using
computer assisted results and problems on skew left
braces.

¢ Nejabati Zenouz (2018) skew braces of order p.

¢ Catino, Colazzo, and Stefanelli (2017, 2018) semi-braces
and skew braces with non-trivial annthilator.

¢ Dietzel (2018) braces of order p?q.

¢ Childs (2018, 2019) correspondence and bi-skew
braces.

¢ Timur Nasybullov (2018), two-sided skew braces.

¢ Koch and Truman (2019), opposite braces and
isomorphism correspondence.
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The number of G-skew braces of type N, (G, N), is given by

g(G,N) Cp3 Cp2 X Cp Cg’ Cg X Cp Cp2 X Cp
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Cp2 X Cp = 9 = = dp + 1

Cg - - 5 2p+1 -
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Column C} x C,, and automorphism groups [cf. NZ19, Apr
2019).




Skew Braces of Order p? for p > 3

Theorem 2 [cf. NZ18, Jan 2018]

The number of G-skew braces of type N, (G, N), is given by

g(G,N) Cp3 Cp2 X Cp Cg’ Cg X Cp Cp2 X Cp
Cps 3 - - - -

Cp2 X Cp = 9 = = dp + 1

Cg - 5 2p+1 -

CZ % C, - 2p+1 | 202 —p+3] -

Cp2 X Gy dp+1 - - 4p® —3p — 1

Column C} x C,, and automorphism groups [cf. NZ19, Apr

2019).

Note

&G, N) =&, G).
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Corollary

Denote by

€G) =) &G N)=) _EN,G).

Then we have

¢ Jao
Cp3 3

Cpa X Cp || 4p+10
Cg 2p 4+ 6

C]%NCP 2p? +p+4
Cpe xCp | 4p* +p

Total 6p® + 8p + 23
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Strategy for the Proofs of Theorems 1 & 2

e For each group N of order p? determine Aut(NV).
Aut(Cps) = Cp2 x Cpoy, Aut(C}) = GL3(IF,),
Aut(C2 x C,) = C2 x GLy(F,),

1 — C2 — Aut(Cp2 x C) — UPy(F,) — 1,

1 — C2 — Aut(Cp2 x C) — UPL(F,) — 1.

o Classify regular subgroups of Hol(N) according to the size
of their image under the natural projection

Hol(N) —» Aut(N).

@ To find skew braces study conjugation formula by
elements of Aut(/N) inside Hol(V).
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Strategy for the Proofs

@ Organise the regular subgroups of H C Hol(N) according
to the size of their image under the projection

© : Hol(N) — Aut(N) no—s a.

e Suppose |O(H)| = m, where m divides |N|, we take a
subgroup of order m of Aut(N) say

Hy = {aq,...,as) C Aut(N).

@ A subgroup of order L of N say
H1 = <n17 "'77]T> C N7

general elements vy, ...,vs € N.
e Consider subgroups of Hol(N) of the form

H = <7]17 .-.,7]7-,'(]10(1, ‘-‘;Usas> g HO].(N)
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Strategy for the Proofs

@ Then search for all v; such that the group H is regular.

e For H to satisfy |©(G)| = m, it is necessary that for every
relation R(ay, ..., ) = 1 in Hy we require

R(uy(vion)wy, ..., us(vsas)ws) € Hy

for all u;, w; € Hy.

e For H to act freely on N it is necessary that for every word
W(ay, ...,as) # 1 in Hy we require

W (uy (via)wy, ..., ug (Ve )ws )W (o, ..., o)t ¢ Hy

for all u;, w; € Hy.
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Hopf-Galois Structures of Heisenberg Type

Heisenberg Group

C’;xle ={(p,o,7|pP =P =71 =1, op=po, Tp = pT, TO = poT)
Let us denote by

110 10 101
1o 1 0], (o1 s o 10
00 1 0 1 00 1

_ o O
O = O

We have (ay, as, as) = C2 x C, is one of the p + 1 Sylow
p-subgroups of

Aut(C? x Cy) =2 CF % GLy(F,).
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Nonabelian:
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fora,d=0,...,p—1, b,c=1,...,p—1 with b # p—1, a+cd+1 # 0 mod p.
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fora=0,...,p—1, bye=1,....,p—1,with ¢ # 1,
<p, ot 7'0/1’> , <p, ot Toz?oz§>
fora,d=0,...,p—1, b,c=1,...,p—1 with b # p—1, a+cd+1 # 0 mod p.
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Hopf-Galois Structures of Heisenberg Type (p)

Nonabelian:

b a b a, c a b _c
<p’ T, O'O£1> ’ <p7 T, Ja1a2> ’ <p77—7 O-ala3> ) <p77—7 0'(11()[2043>

fora=0,...,p—1, bye=1,....,p—1,with ¢ # 1,

d b d a .c
<p70T aTa1>7<puaT 7Ta1a3>

fora,d=0,...,p—1, b,c=1,...,p—1 with b # p—1, a+cd+1 # 0 mod p.

Abelian:

a a b d —(cd+1) ¢
<p7 T, 0a1a3> ) <P7 T, 0a1a2a3> ) <P7 aT )Tal 043

fora,c,d=0,...,p—1, b=1,....,p—1,
We shall multiply by p + 1 appropriately wherever a subgroup
involves axy.
Skew Braces:
<P7 T, 00[3) 9 <P7 T, O'O[2a3> = CS) <p7 T, O'Oé1> ) <p7 T, O'O[2> )

(p,T,003),(p,T,000053) = M; forc=2,...,p—1.



Hopf-Galois Structures of Heisenberg Type (p?)

Nonabelian:
(p,uc1,vag) for A= (42 32) € GL2(Fp) with va — ug — det(A) # 0 mod p,
(0, 7" a1,yazag) fora,y3 =0,...,p—1, y2,z3=1,...,p—1
with y2 — ax3 + z3y2 #Z 0 mod p,



Hopf-Galois Structures of Heisenberg Type (p?)

Nonabelian:

(p,uc1,vag) for A= (42 32) € GL2(Fp) with va — ug — det(A) # 0 mod p,
(p, 73 a1, ya20g) fora,y3 =0,...p—1, y2, 23 =1,...,p—1

with y2 — ax3 + z3y2 #Z 0 mod p,
Abelian:
(p,uai,vag) for A= (32 2) € GLy(Fp) with vy = u3 + det(A),

14z .
<P7 Tz3a170y27'y301201§, Te)v2ts > for y3 =0,...,p— 1, y2,03 =1,...,p — 1,



Hopf-Galois Structures of Heisenberg Type (p?)

Nonabelian:

(p,uc1,vag) for A= (42 32) € GL2(Fp) with va — ug — det(A) # 0 mod p,

u3 v3
(p, 7" a1, yazag) for a,y3 =0,..,p—1, y2, 23 =1,..,p— 1
with y2 — ax3 + z3y2 #Z 0 mod p,
Abelian:
(p,uai,vag) for A= (32 2) € GLy(Fp) with vy = u3 + det(A),
z3 Y2 1Y3 (1+z3)1‘2z51
py T8, 02T anay forys =0,..,p—1, y2,z3 =1,...,p—1,

Skew braces:

(p.0a1,0" " ag), (p, 7~ "5 a1, 0" ag) , (p, 7" a1, 0azag) = My,

—1
—2 2 (I+z3) 3
(p,o01,0"21%2as), {p, 7 *a1,0%a3), <p, TP, oo 3 = C, for

a,uz =0,...,p— 1, uz,uq,us5,73,=1,...,p— 1

with us # 2, uz — u4, axz — (1 + z3) Z 0 mod p.



Hopf-Galois Structures of Heisenberg Type (p?)

Abelian:

<p“17"2041, P T My, pw1027w3a3> = M,
for uy, vy, w1, w3 =0,...,p — 1 with v; + %ul(l —up) #Z 0 mod p,
Skew braces:

<T’2a1,p57a2, 027t3a3> >~ M, fort3=0,1, s=1,9,
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Letp>2,n>1,andC’pn:<a]apn:1>.
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Skew Braces of Cn type

Let p > 2, n>1, and Cpn = (0 | 0?" =1). Then
Hol (Cpn) = (o) x (8,7)

with 3 (o) = oP*!. Then the trivial (skew) brace is (o), and the
nontrivial (skew) braces are given by

<aﬁpm> =2 (Cpmform=0,...,n—2.
We also have

Autg, (<Uﬁpm>) = <Bpn_m_2> form=20,....,n — 2.
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Skew Braces of Semi-direct Product Type

Question
How general is the pattern e(G, N) = ¢e(N, G)?

Proposition 4.6.12 [cf. NZ18, Jan 2018, p. 130]

Let P and @ be groups. Suppose «, 3 : Q — Aut(P) are group
homomorphisms such that Im 3 is an abelian group and
[Im o, Im g] = 1.

@ We can form an (P %, Q)-skew brace of type P x5 Q).

@ And an (P xz Q°P)-skew brace of type P X, Q.

What is the relationship between €(G, N) and e¢(N, G) for N
which is a general extensions of two groups?
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Scopes and Work in Progress

@ Work in progress: classify skew braces and Hopf-Galois
structures of type Cpn % C),.

© Study the Galois module theoretic invariants of
Hopf-Galois structures corresponding to a skew brace.

© Extend results to study skew braces of type
(Cpe X Cpf) X Cpe for natural numbers e, f, g.

© Study skew braces whose type is an extension of two
abelian groups. Does the pattern

&G, N) = &(N,G)

still hold?



Thank you for your attention!
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